
The Standard Finite Element Method and the Weak Galerkin

Method for Elliptic Boundary Value Problems

Senior Thesis

written by

Mark Taylor

supervised by

Prof. Qilong Zhai

Department of Mathematics

Jilin University

June 4, 2021

Abstract

This thesis introduces the bare-bones of finite element methods (FEM) for second-order

elliptic boundary value problems and presents a straightforward implementation in MATLAB

for the standard FEM. Then We give some conclusions about error estimates and the rate of

convergence. In the end, we provide a cutting-edge technique—the weak Galerkin method as

a comparison to the standard (Galerkin) FEM. The accuracy of approximation by these two

methods will be analyzed experimentally through a couple of numerical experiments.

Acknowledgment

First, the author would like to thank Prof. Ralf Hiptmair who wrote (and is actively updating) this

MARVELOUS FEM (NPDE actually) book. It is of extremely high quality, comprising a tremendous

number of beautiful figures which makes the book incredibly accessible and interesting.

Then the author want to thank Prof. Qilong Zhai who has provided great suggestions in the writing

and for supervising the author with great patience and responsibility. This thesis couldn’t be done

without his help.

In addition, the author is extremely grateful to Miss White for discussing the quadratic finite

elements for the two-point boundary value problems with him last term, which underlay an important

understanding of higher order finite elements to the author. Also, the author is very appreciative of the

practical help from Shuaishuai Lu in implementing FEM.

Lastly, the author want to give thanks to my awesome roomies who have been there for me sharing

joys and sorrows with me in these years, to all the adorable classmates and cute teachers who have made

our college life this lovely, and most of all huge thanks to my beloved parents who have always been so

supportive.

https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

LIST OF ALGORITHMS Contents iii

Contents

0 Introduction 1

1 Weak Formulation 2

2 Discretization 3

2.1 Choices of Trial/Test Space and Basis . 3

2.1.1 Meshes (Grids) in 1D: Intervals . 4

2.1.2 Meshes in 2D: Triangulations . 5

2.1.3 Space and Basis in 1D . 6

2.1.4 Space and Basis in 2D . 7

2.2 Computing Galerkin Matrices and R.H.S. Vectors . 9

2.2.1 In One-Dimension . 9

2.2.2 Sparsity of Galerkin Matrix . 11

2.2.3 Computation of Galerkin Matrix . 12

2.2.4 Computation of Right-Hand Side Vector . 17

3 Error Analysis 20

4 Implementation 21

4.1 Mesh Generation, Index Mapping, and Mesh Refinement 22

4.2 Local Computations . 25

4.3 Assembly Algorithms . 30

4.4 Incorporation of Boundary Conditions . 30

4.5 Considerations for Higher Order Finite Elements . 34

5 Numerical Experiments 36

5.1 Example 1 . 36

5.2 Example 2 . 37

5.3 Examples for TPBVP . 39

6 Further Reading—A Weak Galerkin FEM 41

6.1 Weak Gradients and Discrete Weak Gradients . 41

6.2 Weak Galerkin Finite Element Schemes . 42

6.3 Error Analysis for Weak Galerkin . 43

6.4 Comparison to Standard FEM . 44

7 Conclusion 50

References 51

Appendix 52

List of Algorithms

1 Vertex-centered assembly of Galerkin matrix for linear finite elements 16

2 Cell-oriented assembly of Galerkin matrix for linear finite elements 17

3 Abstract assembly routine for finite element Galerkin matrices 30

4 Generic assembly algorithm for finite element R.H.S. vectors 30

0 INTRODUCTION Contents 1

0 Introduction

This thesis consists of two parts: Section 1–5 is the first part introducing the standard Galerkin FEM,

and Section 6 is the second part introducing the weak Galerkin FEM.

In the first part, we extract and summarize the essentials (weak formulation, discretization, and

implementation details) of finite element methods in the online book Numerical Methods for Partial

Differential Equations [Hip21] from ETH Lecture 401-0674-00L by Prof. Ralf Hiptmair. We will also

add some our own understanding in it, of course. We aim to make it as accessible as possible. So We

present this part in a way such that one can learn by analogy. This is made easy by first examining

the one-dimensional two-point boundary value problems. Then by analogy one can smoothly proceed

to the two-dimensional elliptic boundary value problem. It allows one to learn the basic concepts

of FEM with relative ease. By learning this five sections one can implement a small framework for

numerically solving some elliptic boundary values problems in the standard Galerkin FEM. We also

provide a minimum implementation in MATLAB, the code of which can be found at https://github.

com/How-u-doing/Numerical_Analysis/tree/master/Chapter11_FEM2d. Besides, the 1D counterpart

involved in Section 5.3 is available at https://github.com/How-u-doing/Numerical_Analysis/tree/

master/Chapter10_BVPforODEs.

We start our journey in Section 1 by converting boundary value problems into their equivalent weak

formulations. In the second part, Section 2, we provide the discretization of boundary value problems,

which is only one, but a critical step in numerical treatment of boundary value problems. This step

assembles and builds the Galerkin matrix and right-hand side vector, which are the two final components

in finite element methods that will then be used to solve the linear systems of equations in order to obtain

the numerical solution. Also, the assembly of mass matrix and the imposition of natural and essential

boundary conditions will be discussed. Subsequently, by convention, we “analyze” the accuracy and

convergence of this numerical method (FEM) in Section 3. The fourth segment in Section 4 contains

some implementation details in the context of MATLAB, including mesh generation, index mapping,

local computations of element matrices and element vectors, incorporation of boundary conditions, etc.

To the end of the first part, we present two numerical experiments of 2nd-order elliptic boundary value

problems in Section 5. We will solve those two BVPs using the algorithms mentioned in Section 2

and Section 4. Additionally, examples of two-point BVPs that employ both linear finite elements and

quadratic finite elements are also provided for the sake of comparison and completeness.

In the end, in the second part as a further reading, we provide and discuss a newly developed novel

technique, the weak Galerkin finite element method. The introduction of the weak gradients makes it

powerful enough to handle non-continuous piecewise polynomial across cells. We will see how it differs

from the standard Galerkin FEM in terms of approximation quality in Section 6.4.

https://video.ethz.ch/lectures/d-math/2018/spring/401-0674-00L.html
https://github.com/How-u-doing/Numerical_Analysis/tree/master/Chapter11_FEM2d
https://github.com/How-u-doing/Numerical_Analysis/tree/master/Chapter11_FEM2d
https://github.com/How-u-doing/Numerical_Analysis/tree/master/Chapter10_BVPforODEs
https://github.com/How-u-doing/Numerical_Analysis/tree/master/Chapter10_BVPforODEs

1 WEAK FORMULATION Contents 2

1 Weak Formulation

A finite element method is characterized by a variational formulation, a discretization strategy, one

or more solution algorithms, and post-processing procedures. In this section, we will transform our

mathematical models (boundary value problems) into their corresponding weak formulations. Let us

first look at two model problems that will form the basis for this thesis.

P1: A one-dimensional two-point boundary value problem with homogeneous Dirichlet boundary

conditions

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x), x ∈ (a, b), (1)

u(a) = 0, u(b) = 0, (2)

where p(x) ∈ C1(Ī), p(x) ≥ pmin > 0, q(x) ∈ C1(Ī), q(x) ≥ 0, f(x) ∈ L2(I), I =]a, b[.1

P2: A second-order elliptic homogeneous Neumann problem

−∇ · (α(x)∇u) + γ(x)u = f, in Ω, (3)

α(x)∇u · n = 0, on ∂Ω, (4)

where Ω is an open bounded domain in R2, ∇u denotes the gradient of the function u, α is a symmetric

uniformly positive definite2 2 × 2 matrix-valued function, γ is a scalar-valued function, and n is the

outward unit vector normal to the boundary ∂Ω.

For differential equation (1) in P1, multiplying a test function v(x) on both sides and applying

integration by parts we have∫ b

a

[
− d

dx

(
p(x)

du

dx

)
v + q(x)uv

]
dx =

∫ b

a

(
p(x)

du

dx

dv

dx
+ q(x)uv

)
dx− p(x)

du

dx
v(x)|ba (5)

=

∫ b

a

fv dx.

Now we choose the test space V = H1
0 := {u ∈ H1(I),3 u = 0 at x = a and x = b} and v(x) ∈ V , then

the second term on the right-hand side of (5) vanishes since v(a) = v(b) = 0. Hence,∫ b

a

(
p(x)

du

dx

dv

dx
+ q(x)uv

)
dx =

∫ b

a

fv dx ∀v ∈ V. (6)

Using space of trial functions U = V we can rephrase problem (6) in the following weak form:{
Find u ∈ U such that

a(u, v) = `(v) ∀v ∈ V.
(7)

Here a : U × V 7→ R is a continuous bilinear form and ` : V 7→ R is a continuous linear form, with

a(u, v) =

∫ b

a

(
p(x)

du

dx

dv

dx
+ q(x)uv

)
dx, `(v) =

∫ b

a

fv dx. (8)

1The notation]a, b[is used for an open interval, more commonly written as (a, b). But the latter can be confused with

a vector or an element of R2.
2A matrix-valued function A : Ω 7→ Rn,n, n ∈ N, is called uniformly positive definite, if

∃ε− > 0 : z>A(x)z ≥ ε−‖z‖ ∀z ∈ Rn

for almost all x ∈ Ω, that is, only with the exception of a set of volume zero.
3H1(Ω) is a the Sobolev space of functions on Ω with generalized derivatives L2(Ω), i.e.

H1(Ω) := {v : Ω 7→ R integrable :

∫
Ω
|∇v(x)|2dx <∞}

2 DISCRETIZATION Contents 3

Problem (7) is also referred to as a variational problem and as the variational form of (1, 2). The reasons

for using the terms “variational” and “weak” to describe (7) are explained in [Goc06].

The standard finite element approximation of (6) amounts to the construction of Galerkin or weighted

residual approximations of (1, 2) over finite dimensional subspaces Uh ⊂ U and Vh ⊂ V .4 That is,{
Find uh ∈ Uh such that

a(uh, vh) = `(v) ∀vh ∈ Vh,
(9)

where

a(uh, vh) =

∫ b

a

(
p(x)

duh
dx

dvh
dx

+ q(x)uhvh

)
dx, `(v) =

∫ b

a

fvh dx. (10)

Similarly, for partial differential equation (3) in P2 we integrate by parts via Green’s theorem noticing

the boundary condition (4):∫
Ω

(−∇ · (α(x)∇u) v + γ(x)uv) dx =

∫
Ω

(α(x)∇u · ∇v + γ(x)uv) dx−
∫
∂Ω

α(x)∇u ·n v ds =

∫
Ω

fv dx,

⇓

∫
Ω

(α(x)∇u · ∇v + γ(x)uv) dx =

∫
Ω

fv dx ∀v ∈ V, (11)

where V = H1(Ω).

Likewise, using U = V = H1(Ω), Uh ⊂ U, Vh ⊂ V we can obtain exactly the same discrete weak form

as that of (9), but with a(uh, vh) and `(vh) being

a(uh, vh) =

∫
Ω

(α(x)∇uh · ∇vh + γ(x)uhvh) dx, `(vh) =

∫
Ω

fvh dx. (12)

(9, 10) and (9, 12) are the discrete weak formulations based on which we will develop our numerical

solutions in later sections.

2 Discretization

In previous section, we have derived the continuous and discrete weak formulations equivalent to the

boundary value problems P1, P2. Reducing the continuous infinite dimensional problems to a finite

dimensional vector subspace allows us to numerically compute uh as a finite linear combination of the

basis vectors in Uh. In this section we will dive into the details of Galerkin discretization, which consist

of three parts: choice of trial/test space, choice of basis, computing Galerkin matrices and right-hand

side vectors.

2.1 Choices of Trial/Test Space and Basis

We adopt Galerkin method throughout this thesis so we have Uh = Vh (in general, Uh 6= Vh, though).

Let Bh = {b1h, b2h, ..., bNh } be an ordered basis of Uh, then uh, vh can be written as follows

uh = µ1b
1
h + µ2b

2
h + ...+ µNb

N
h , µi ∈ R, (13)

vh = ν1b
1
h + ν2b

2
h + ...+ νNb

N
h , νi ∈ R. (14)

The number N ∈ R above is the dimension of the discrete trial and test space Uh, i.e. N := dimUh.

Inserting (13) and (14) into a(uh, vh) and `(vh) and considering the linearity of a(·, ·) and `(·) give

the following chain of equivalent statements:

uh ∈ Uh : a(uh, vh) = `(vh) ∀vh ∈ Uh. (15)

4The subscript h is a discretization parameter generally chosen as a measure of the mesh size.

2 DISCRETIZATION Contents 4

⇔
N∑
k=1

N∑
j=1

µkνja(bkh, b
j
h) =

N∑
j=1

νj`(b
j
h) ∀ν1, ..., νN ∈ R, (16)

⇔
N∑
j=1

νj

(
N∑
k=1

µka(bkh, b
j
h)− `(bjh)

)
= 0 ∀ν1, ..., νN ∈ R, (17)

⇔
N∑
k=1

µka(bkh, b
j
h) = `(bjh) for j = 1, ..., N. (18)

⇔ A #»µ = #»ϕ, (19)

where A =
[
a(bkh, b

j
h)
]N
j,k=1

∈ RN,N , #»µ = (µ1, ..., µN)> ∈ RN , #»ϕ =
[
`(bjh)

]N
j=1

. (20)

We can see that problem (15) is finally converted to a linear system of equations A #»µ = #»ϕ which then can

be solved by a computer by applying one or more solution algorithms that have been very well established.

We call A =
[
a(bkh, b

j
h)
]N
j,k=1

∈ RN,N , #»ϕ =
[
`(bjh)

]N
j=1

, #»µ = (µ1, ..., µN)> ∈ RN , and uh =∑N
k=1 µkb

k
h the Galerkin matrix, right-hand side vector, coefficient vector, and recovery of solution,

respectively. For legacy reasons, Galerkin matrix, right-hand side vector, and Galerkin matrix for

(u, v) 7→
∫

Ω
uv dx are also referred to as stiffness matrix, load vector, and mass matrix, respectively.

These came from the field of solid mechanics (linear elasticity) to which finite element methods were

primarily applied in the early stage (late 60s and early 70s). Besides, the term degree of freedom

(d.o.f./DOF) is also frequently used in finite element methods. It has double meanings: 1 either a single

component of the basis expansion vector µ for the Galerkin solution, 2 or a basis function bih ∈ Bh.

For the sake of function approximation the finite element method chooses polynomials. In specific, the

finite element method is based on approximation by continuous, piecewise polynomials, where “piecewise”

is to be understood with respect to a partition of the computational domain Ω. Here Ω =]a, b[for the

1D problem P1 and Ω = “an open bounded domain ⊂ R2” for the 2D problem P2.

Now let us take a look at the elements that constitute the domain Ω in 1D and 2D respectively. By

the way, the name “finite element” out the “finite element method” comes from dividing the problem

domain into a finite number of geometry shapes, in particular, intervals in 1D, triangles or quadrilaterals

in 2D, tetrahedrons or hexahedra in 3D, etc. See Figure 1 below.

1D 2D 3D

Figure 1: Types of finite elements

2.1.1 Meshes (Grids) in 1D: Intervals

x1 x2 xM−1a = x0 xM = b· · ·

Figure 2: A partition on interval [a, b]

When talking about piecewise polynomials one has to fix a partitioning of the domain]a, b[first.

Therefore we equip Ω = [a, b] with M + 1 nodes (M ∈ N) forming the set (see Figure 2)

V(M) := {a = x0 < x1 < ... < xM−1 < xM = b}.

2 DISCRETIZATION Contents 5

The nodes define small intervals that constitute a mesh/grid

M := {]xj−1, xj [: 1 ≤ j ≤M}.

The intervals [xj−1, xj], j = 1, ...,M are the cells of the mesh M, which is often identified with the set

of its cells. A special case is an equidistant mesh with uniformly spaced nodes:

xj = a+ jh, h =
b− a
M

.

The local and global resolution of a mesh/grid is measured through two quantities, the

(local) cell size hj := |xj − xj−1|, j = 1, ...,M

(global) meshwidth hM := max
j
|xj − xj−1|.

2.1.2 Meshes in 2D: Triangulations

Figure 3: Triangular mesh in 2D Figure 4: Quadrilateral mesh in 2D

Figure 5: A 2D hybrid mesh comprising triangles, quadrilaterals, and curvilinear cells (at ∂Ω)

While in 1D splitting the interval into disjoint sub-intervals is about the only meaningful option to

define a partition, we have many more possibilities in higher dimensions, for example, triangular mesh

(Figure 3), quadrilateral mesh (Figure 4), or hybrid mesh (Figure 5), etc. Here we opt for triangulations,

which are the most common meshes in two dimensions. The definition of finite element triangulation

and some common parlance we use are given below:

Definition 2.1 (Triangulation). A triangulation M of Ω satisfies

(i) M = {Ki}Mi=1, M ∈ R, Ki := open triangle

(ii) disjoint interiors: i 6= j ⇒ Ki ∩Kj = ∅

(iii) tiling/partition property:

M⋃
i=1

Ki = Ω

(iv) intersection Ki ∩Kj , i 6= j is

- either ∅,

- or an edge of both triangles,

- or a vertex of both triangles.

2 DISCRETIZATION Contents 6

Common parlance: vertices of triangles = nodes of mesh = set V(M)

triangles of the mesh = cells or elements of mesh = set M

2.1.3 Space and Basis in 1D

x1 x2 x3 · · ·a b

1

Figure 6: ⇑ a function ∈ S0
1,0(M)

x1 x2 x3 · · ·a b

1

Figure 7: ⇑ a function ∈ S0
1 (M)

For the 1D problem P1, we consider the simplest space of continuous, M -piecewise polynomial

functions in H1
0 (]a, b[):

Uh = S0
1,0(M) :=

{
v ∈ C0[a, b] : v|[xi−1,xi] linear,

i = 1, ...,M, v(a) = v(b) = 0

}
, (21)

N := dimS0
1,0(M) = M − 1.

In above notation, the symbol S in S0
1,0 comes form the fact that the space is comprised of scalar

functions, the superscript 0 in S0
1,0 is owing to C0[a, b] (continuous functions), the subscript 1 in S0

1,0 is

due to the linearity (locally 1st degree polynomials), and the subscript 0 in S0
1,0 is because of being zero

at the (homogeneous) boundary (see Figure 6). For a more general two-point Dirichlet problem, we can

define (see Figure 7)

S0
1 (M) :=

{
v ∈ C0[a, b] : v|[xi−1,xi] linear, ∀i = 1, ...,M

}
. (22)

x1 x2 x3 · · ·a b

1

Figure 8: 1D tent functions in S0
1,0(M)

Our choice of the ordered basis Bh = {b1h, ..., b
M−1
h } of Uh is the 1D tent functions (see Figure 8):

bjh(x) :=


(x− xj−1)/hj , if xj−1 ≤ x ≤ xj ,
(xj+1 − x)/hj+1, if xj ≤ x ≤ xj+1,

0, elsewhere.

(23)

bjh(xi) = δ(x) :=

{
1, if i = j,

0, if i 6= j.
(24)

In (13), letting x be the interior nodes of the mesh (x = xj , j = 1, ...,M − 1) and noting (24) we have:

uh ∈ S0
1,0(M) ⇔ uh =

M−1∑
i=1

uh(xi)b
i
h. (25)

2 DISCRETIZATION Contents 7

2.1.4 Space and Basis in 2D

Linear Finite Element Space

Now we examine the two-dimensional linear finite element space as well as the basis in 2D. Our first

objective is to we generalize the space S0
1 (M) as defined in (22) to 2D. To do so we first extend he

concept of (affine) linear scalar-valued functions. Table 1 below exhibits the natural correspondence of

concepts in 1D and 2D. Then we define S0
1 (M) over a triangular mesh in 2D in the same fashion as we

defined it in 1D over a partition of an interval.

d = 1 d = 2

Grid/mesh cells: intervals]xi−1, xi[, i = 1, ...,M triangles Ki, i = 1, ...,M

Linear functions: x ∈ R 7→ α+ β · x, α, β ∈ R x ∈ R2 7→ α+ β · x, α ∈ R,β ∈ R2

Table 1: Affine linear functions in 1D and 2D

This suggests that we try a definition analogous to the 1D case (22) (see Figure 9):

Uh = S0
1 (M) :=

{
v ∈ C0(Ω) : ∀K ∈M :

v|K(x) = αK + βK · x,
αK ∈ R,βK ∈ R2,x ∈ K

}
⊂ H1(Ω). (26)

The proof of the subset relationship above between S0
1 (M) and H1(Ω) involves the notion of weak

derivatives and thus will not be discussed here but an intuitive theorem alongside a graph is given in

the book [Hip21] in 1.3.4.22. The theorem implies that a function that is piecewise (with regard to a

“nice” partition of Ω) smooth and bounded belongs to H1(Ω) if and only if it is continuous on the entire

domain Ω, which accounts for the requirement of C0(Ω) in the above definition.

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 9: ⇑ a continuous piecewise affine linear function ∈ S0
1 (M) on a triangular mesh M

It can be seen that for uh ∈ S0
1 (M) the gradient graduh can be computed on each triangle as

piecewise constant function, i.e.

on K ∈M : grad(αK + βK · x) = βK . (27)

2 DISCRETIZATION Contents 8

Nodal Basis Functions

Our next goal is the generalization of “tent functions”, see (23) and Figure 8. In 1D, adding two more

“half-tent” functions (see the two green parts in Figure 10), cardinal basis functions belonging to the

end points x0 and xM , we obtain a basis of S0
1 (M):

B = {b0h, ..., bMh }, (28)

bjh(xi) = δ(x) :=

{
1, if i = j,

0, if i 6= j.
(29)

x1 x2 x3 · · ·a = x0 b = xM

1

Figure 10: 1D tent functions in S0
1 (M)

Actually, the “nodal (value) property” condition (29) already defines a tent function in the space

S0
1 (M). This approach is directly carried over to 2D: for any node x ∈ V(M) we let it have height

1, then together with all its adjacent nodes they form a tent shape function (partial tent shape on the

boundary ∂Ω), see Figure 11 for an illustration.

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 11: A (global) piecewise linear nodal basis function on a triangular mesh M

From the above picture we can see that the basis function bih can be viewed as the intersection of

the xOy plane and several slanted planes of these local tetrahedrons on the adjacent triangles to vertex

xi. Figure 12 shown on the next page is one of the six local nodal basis functions that form the global

piecewise linear nodal basis function in Figure 11. Further more, from a triangle’s perspective, if we look

at each triangle on the meshM, each of the 3 vertices can serve as the pivot so that the slanted plane of

this local tetrahedron constitutes one part of the global tent function that is based on the pivot (vertex).

Thus, we can define the 2D counterpart of the 1D tent function basis by “nodal conditions” in the

following fashion:

2 DISCRETIZATION Contents 9

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 12: A local nodal basis function over a triangle with the pink node being the pivot

Writing V(M) = {x1, ...,xN}, an ordering of the nodes is implied, the nodal basis Bh = {b1h, ..., bNh } of

S0
1 (M) satisfies the conditions

bjh ∈ S0
1 (M),

bjh(xi) =

{
1, if xi = xj ,

0, if xi ∈ V(M) \ {xj},

i, j = {1, ..., N}.

(30)
1

xj

bjh

Given the cardinal basis property of Bh with respect to the node set V(M) = {x1, ...,xN} in (30),

the coefficients of the nodal basis expansion of a uh ∈ S0
1 (M) coincide with the nodal values uh(xi):

uh ∈ S0
1 (M) : uh =

N∑
i=1

µib
i
h ⇔ µi = uh(xi) ∀i = 1, ..., N. (31)

2.2 Computing Galerkin Matrices and R.H.S. Vectors

2.2.1 In One-Dimension

In Section 2.1.3 we have obtained the 1D tent basis functions

bjh(x) :=


(x− xj−1)/hj , if xj−1 ≤ x ≤ xj ,
(xj+1 − x)/hj+1, if xj ≤ x ≤ xj+1,

0, elsewhere.

Then we can conclude that

|i− j| ≥ 2 ⇒
dbjh
dx

(x)
dbih
dx

(x) = 0, bjh(x)bih(x) = 0 ∀x ∈ [a, b], (32)

which follows from the fact that there is no overlap of supports of the two basis functions.

2 DISCRETIZATION Contents 10

Since by (10) and (20)

(A)ij = a(bjh, b
i
h) =

∫ b

a

(
p

dbjh
dx

dbih
dx

+ qbjhb
i
h

)
dx, (33)

(32) suggests that the Galerkin matrix for problem P1 is tridiagonal (also symmetric by (33)).

For simplicity, we first look at a simplest case where p(x) = 1, q(x) = 0. Noting that the gradients

(derivatives) of the tent functions are piecewise constant:

dbjh
dx

=


hj , if xj−1 ≤ x ≤ xj ,
−hj+1, if xj ≤ x ≤ xj+1,

0, elsewhere,

(34)

then it immediately follows that

∫ b

a

dbjh
dx

(x)
dbih
dx

(x) dx =



0, if |i− j| > 2, →

a b

1

− 1

hi+1
, if j = i+ 1, →

a b

1 bih bjh

− 1

hi
, if j = i− 1, →

a b

1 bjh bih

1

hi
+

1

hi+1
, if 1 ≤ i = j ≤M − 1. →

a b

1 bjh

So we can obtain the following Galerkin matrix which is symmetric, positive definite, and tridiagonal :

A =



1
h1

+ 1
h2

− 1
h2

0 0

− 1
h2

1
h2

+ 1
h3
− 1
h3

0
. . .

. . .
. . .

. . . 0
. . .

. . . − 1
hM−1

0 0 − 1
hM−1

1
hM−1

+ 1
hM


∈ RN,N , N := M − 1. (35)

Specially, for an equidistant mesh M with uniform meshwidth h > 0 the finite element linear system of

equations (19) becomes

1

h



2 −1 0 0

−1 2 −1

0
. . .

. . .
. . .

. . .
. . .

. . . 0

−1 2 −1

0 0 −1 2




µ1

...

µN

 = h


f(x1)

...

f(xN)

 . (36)

2 DISCRETIZATION Contents 11

In fact, by combining the composite trapezoidal rule∫ b

a

ψ(t) dt ≈
M∑
j=1

1

2
hj(ψ(xj−1) + ψ(xj)) (37)

and the cardinal basis property (24) we have

ϕk := (#»ϕ)k =

∫ b

a

f(x)bkh(x) dx ≈ 1

2
(hk + hk+1)f(xk), 1 ≤ k ≤ N, (38)

which explains the right-hand side vector in (36).

More generally, the Galerkin matrix and the right-hand side vector can be computed by the following

formulas:

a(bjh, b
j−1
h) = a(bj−1

h , bjh) =

∫ xj

xj−1

[
p

dbjh
dx

dbj−1
h

dx
+ qbjhb

j−1
h

]
dx

=

∫ xj

xj−1

[
−p(x)h−2

j + q(x)bjh(x)bj−1
h (x)

]
dx

=

∫ 1

0

[
−h−1

j p(xj−1 + hjξ) + hjq(xj−1 + hjξ)(1− ξ)ξ
]

dξ,

(39)

a(bjh, b
j
h) =

∫ xj

xj−1

[
p(

dbjh
dx

)2 + q(bjh)2

]
dx+

∫ xj+1

xj

[
p(

dbjh
dx

)2 + q(bjh)2

]
dx

=

∫ xj

xj−1

[
p(x)h−2

j + q(x)(bjh(x))2
]

dx+

∫ xj+1

xj

[
p(x)h−2

j+1 + q(x)(bjh(x))2
]

dx

=

∫ 1

0

[
h−1
j p(xj−1 + hjξ) + hjq(xj−1 + hjξ)ξ

2
]

dξ +∫ 1

0

[
h−1
j+1p(xj + hj+1ξ) + hj+1q(xj + hj+1ξ)(1− ξ)2

]
dξ,

(40)

(#»ϕ)j =

∫ xj

xj−1

f(x)bjh(x) dx+

∫ xj+1

xj

f(x)bjh(x) dx

= hj

∫ 1

0

f(xj−1 + hjξ)ξ dξ + hj+1

∫ 1

0

f(xj + hj+1ξ)(1− ξ) dξ.

(41)

Here j = 2, ..., N for (39), and j = 1, ..., N for (40) and (41).

Next, we focus on the 2D computations of Galerkin matrix and RHS vector. Before the start of our

computations we shall first look at the structures of Galerkin matrices.

2.2.2 Sparsity of Galerkin Matrix

We have learned from previous sub-subsection that the Galerkin matrix is tridiagonal under the linear

finite element Galerkin discretization in one dimension. In the 2D counterpart, we can also prove that

it is always sparse, that is, most of its elements are zero.

Lemma 2.1 (Sparsity of Galerkin matrix [Hip21, Lemma 2.4.4.2]). There is a constant C > 0 depending

only on the topology of Ω, that is, the number of “holes” in it, such that for any triangular mesh M of

Ω (N :=]V(M) = number of vertices)

]{(i, j) ∈ {1, ..., N}2 : (A)ij 6= 0} ≤ 7 ·N + C,

where A is any Galerkin matrix arising from a discretization of a 2nd-order linear scalar elliptic variational

problem with linear finite elements.

2 DISCRETIZATION Contents 12

Proof. We rely on Euler’s formula for triangulations.

]M−]E(M) +]V(M) = χΩ, χΩ = Euler characteristic of Ω.

Note that χΩ is a topological invariant (alternating sum of Betti numbers).

By combinatorial considerations (traverse edges and count triangles):

2 ·]EI(M) +]EB(M) = 3 ·]M,

where EI(M), EB(M) stands for the sets of interior and boundary edges of M, respectively.

Combining the above two equations yields

]EI(M) + 2 ·]EB(M) = 3(]V(M)− χΩ).

Then use

N =]V(M), nnz(A) ≤ N + 2 ·]E(M) ≤ 7 ·]V(M)− 6χΩ,

which implies the assertion for any triangulation. This completes the proof. �

2.2.3 Computation of Galerkin Matrix

Now we investigate an efficient algorithm for computing the non-zero entries of the sparse finite element

Galerkin matrix. For the sake of simplicity, we shall, for the moment, drop the second term γ(x)u and

let α(x) be a 2× 2 identity matrix in (3) so that the bilinear form in (12) becomes

a(uh, vh) :=

∫
Ω

graduh · grad vh dx, uh, vh ∈ H1(Ω),

thus leading the entries of the Galerkin matrix A to

(A)ij = a(bjh, b
i
h) =

∫
Ω

grad bjh · grad bih dx.

It is not hard to see that{
Differing nodes xi,xj ∈ V(M)

that are not connected by an edge
⇔ Vol(supp(bih) ∩ supp(bjh)) = 0

}
⇒ (A)ij = 0.

Therefore, in order to compute (A)ij we only need to deal with the situations where the two nodes

xi,xj ∈ V(M) are either connected by an edge of the triangulation or coincide. We shall first elaborate

the former case.

When two nodes are connected by an edge, the edge can be either an interior edge or a boundary

edge. If it is an interior edge then it must be shared by two triangles whereas a boundary edge enjoys the

full ownership by a particular boundary triangle. For the first case we can think of (A)ij as the result

of summing up the two triangles:

https://en.wikipedia.org/wiki/Euler_characteristic

2 DISCRETIZATION Contents 13

(A)ij =

∫
K1

grad bjh|K1
· grad bih|K1

dx +∫
K2

grad bjh|K2
· grad bih|K2

dx

K1

K2

xi

xj

While the boundary edge case can be understood as

(A)ij =

∫
KB

grad bjh|KB
· grad bih|KB

dx,

where KB is a triangle on the boundary.

In any cases, we can view them as summing cell contributions, that is, if an edge is shared by two

cells (triangles) then add them up, if it is only owned by a single cell (triangle) then add this single one.

This idea is termed as assembly, which is the key to implementing the finite element method.

Local Computations

Motivated by the formulas above we now fix our attention on a single triangle K ∈ M, restrict the

bilinear form to it, and examine the cell contribution

aK(bjh, b
i
h) =

∫
K

grad bjh|K · grad bih|K dx, xi,xj nodes ∈ vertices of K. (42)

Thus it is desirable if we could find out the analytic formulas for the restrictions bih|K . Let a1
K ,a

2
K ,a

3
K

be the vertices of the triangle K with coordinates a1
K =

[
a1

1

a1
2

]
, a2

K =

[
a2

1

a2
2

]
, and a3

K =

[
a3

1

a3
2

]
, we write

λi := bjh|K with aiK = xj .

[
i↔ local vertex number

j ↔ global node number

]
(43)

Obviously, we have 3 such functions λ1, λ2, λ3 on any triangle K ∈ M with xj being the 3 vertices of

the triangle respectively, for example, the green surface given in Figure 13 represents the graph of λ2.

1

K

a1
K

a2
K

a3
K

Figure 13: ⇑ a barycentric coordinate function λ2

The functions λ1, λ2, λ3 on the triangle K are also known as barycentric coordinate functions, which

owe their name to the fact that they can be regarded as “coordinates of a point with respect to the

vertices of a triangle” in the sense that

x = λ1(x)a1
K + λ2(x)a2

K + λ3(x)a3
K . (44)

2 DISCRETIZATION Contents 14

For instance, say, x =

[
x1

x2

]
, a1

K =

[
0

0

]
, a2

K =

[
1

0

]
, and a3

K =

[
0

1

]
, then λ1(x) = 1− x1 − x2, λ2(x) =

x1, λ3(x) = x2. According to (44), the following equation holds true:

x = (1− x1 − x2)

[
0

0

]
+ x1

[
1

0

]
+ x2

[
0

1

]
.

In addition, as the attribute “barycentric” indicates, the barycentric coordinate functions λ1, λ2, λ3

satisfy

λ1 + λ2 + λ3 = 1.

For the sake of comparison, we plot the graphs of the functions λ1, λ2, λ3 in alignment:

Since the barycentric coordinate functions λ1, λ2, λ3 are affine linear functions (visually, their graphs

are planes) and for any fixed triangle K ∈M they meet the cardinal basis property (30), we can write

λi(x) = αi + βi · x, (45)

and on a triangle K with coordinates a1
K =

[
a1

1

a1
2

]
, a2

K =

[
a2

1

a2
2

]
, and a3

K =

[
a3

1

a3
2

]
, they satisfy

1 a1
1 a1

2

1 a2
1 a2

2

1 a3
1 a3

2

α1 α2 α3

β1
1 β2

1 β3
1

β1
2 β2

2 β3
2

 =

1 0 0

0 1 0

0 0 1

 . (46)

Now we define the element (stiffness) matrix

AK :=

[∫
K

gradλi · gradλj dx

]3

i,j=1

∈ R3,3. (47)

By (27), we have

gradλi = βi, (48)

which, together with (46), suggests an efficient way to compute the element (stiffness) matrix (47):

AK = |K|
[
β1

1 β2
1 β3

1

β1
2 β2

2 β3
2

]> [
β1

1 β2
1 β3

1

β1
2 β2

2 β3
2

]
∈ R3,3, (49)

where

[
β1

1 β2
1 β3

1

β1
2 β2

2 β3
2

]
can be computed by

[
β1

1 β2
1 β3

1

β1
2 β2

2 β3
2

]
=


1 a1

1 a1
2

1 a2
1 a2

2

1 a3
1 a3

2

−1
(2:3,:)

. (50)

Here the notation (2 : 3, :) in the above equation (50) is adopted from MATLAB, meaning the submatrix

taken from the 2nd row to the 3rd row.

Remark 1. AK does not depend on the “size” of triangle K. This is followed by the reasoning below:

2 DISCRETIZATION Contents 15

� Apparently, translation and rotation of K does not change AK .

� Scaling of K by a factor ρ > 0 has the effect that

– the area |K| is scaled by ρ2,

– the gradients gradλi are scaled by ρ−1 (imagine the graphs of λi: when the triangle shrinks

with ρ < 1, they become steeper, otherwise flatter.)

Combining the two effects above offset the scaling of the triangle K, thus rendering AK invariant.

Assembly of Full Galerkin Matrix

Now we consider the computation of the full Galerkin matrix. This time our idea assembly mentioned

before comes in handy. The computation of Aij for i 6= j starts from summing cell contributions

(A)ij =

∫
K1

grad bjh|K1
· grad bih|K1

dx+

∫
K2

grad bjh|K2
· grad bih|K2

dx,

which can be visualized as follows:

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 

+

1

1

2

3

2
3

K1

K2

xi

xj

Figure 14: Aij by summing entries of two element matrices

In the above diagram, 1 , 2 , and 3 represent the local vertex numbers; the magenta entries ∗ in

the element matrices of K1 and K2 are the items that have contributions to Aij (expressed by the edge,

note the directivity, however, that Aij is contributed by 1 3 from K1 alongside 1 2 from K2 whereas

Aji is contributed by 3 1 from K1 and 2 1 from K2. But in this thesis, the bilinear form a(·, ·) we

use will all be symmetric thus the Galerkin matrix A and the element matrix AK from (47) will also be

symmetric,5 so quantitatively speaking the directivity doesn’t really matter. Otherwise we should make

sure the relations are right).

5Indeed, whether the Galerkin matrix is symmetric is determined by a couple of factors: if the bilinear form is symmetric,

how ever the boundary conditions are imposed, if we choose to use the same kinds of trial and test functions. By the Galerkin

method we make it to the 1st and the 3rd ones, while the second one in real-world problems will usually render the final

Galerkin matrix non-symmetric. But prior to processing the boundary conditions, the Galerkin matrix can be symmetric.

This can be verified from numerical example 1 in Section 5.1.

2 DISCRETIZATION Contents 16

As for the assembly of the diagonal entry Aii of the Galerkin matrix A, it can be obtained by

summing corresponding diagonal entries of element matrices belonging to triangles adjacent to node xi
(see Figure 15).

xi

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 

1

2

3

3

2

3
2

3

3

1

21

1

2

1

Figure 15: Aii by summing diagonal entries of element matrices of adjacent triangles

Therefore, combining the two situations above we can develop a vertex-oriented assembly algorithm

as follows:

Algorithm 1 Vertex-centered assembly of Galerkin matrix for linear finite elements

1: for all e ∈ E(M) do

2: (i, j) := vertex numbers of endpoints of e

3: (A)ij ← 0, (A)ji ← 0

4: for all trangle K adjacent to e do

5: find local numbers l,m ∈ {1, 2, 3} of endpoints of e

6: (A)ij ← (A)ij + (AK)lm . see Figure 14

7: (A)ji ← (A)ji + (AK)ml . see Figure 14

8: end for

9: end for

10: for all v ∈ V(M) do

11: j := number of vertex v

12: (A)ij ← 0

13: for all trangle K adjacent to v do

14: l := local number of e in K

15: (A)jj ← (A)jj + (AK)ll . see Figure 15

16: end for

17: end for

However, this sort of vertex-centered assembly algorithm is a little awkward for implementing,

because, as we can see from the algorithm above, we not only have to traverse each edge and find the

triangle(s) containing the edge, but also have to traverse each vertex as well as all the triangles adjacent to

2 DISCRETIZATION Contents 17

the vertex, which means we need somewhat complex data structures for storing these information or some

extra procedures in order to get the adjacent triangles in the nested loops so that the implementation is

doable. In practice, we adopt another cell-oriented assembly scheme, which only needs to loop over all

cells K ∈ M and distribute all entries of the element matrices AK to the corresponding entries of the

Galerkin matrix. This is illustrated in Figure 16.

a11 a12 a13

a21 a22 a23

a31 a32 a33

 Ak =

1

2

3

Figure 16: Cell-oriented assembly of Galerkin matrix by distribution from element matrices

The green circles can be regarded as the edges to which we can associate the off-diagonal entries

of the Galerkin matrix. An edge can represent both (A)ij and (A)ji, which accounts for why there

are two symmetric off-diagonal entries in an element matrix contributing to an edge . The algorithm

describing the distribution scheme is given below.

Algorithm 2 Cell-oriented assembly of Galerkin matrix for linear finite elements

1: SparseMatrix A ∈ RN,N , N :=]V(M)

2: A := 0

3: M :=]M . no. of cells

4: for i = 1 to M do

5: K ← mesh.getElemCoords(i) . obtain cell-shape information

6: AK ← getElemMatrix(K) . compute element matrix, see (49, 50)

7: for k = 1 to 3 do

8: for j = 1 to 3 do

9: A(i : xi = akK , ` : x` = ajK) += AK(k, j) . see Figure 16

10: end for

11: end for

12: end for

2.2.4 Computation of Right-Hand Side Vector

Computation of the right-hand side vector #»ϕ, as one possibly can guess, runs parallel to what we have

studied in Section 2.2.3. We start from the right-hand side linear form

`(v) :=

∫
Ω

f(x)v(x) dx, v ∈ H1(Ω), f ∈ L2(Ω).

2 DISCRETIZATION Contents 18

From (20) we have learned that #»ϕ =
[
`(bjh)

]N
j=1

, so we have

(#»ϕ)j = `(bjh) =

∫
Ω

f(x)bjh(x) dx, j = 1, ..., N. (51)

Similarly, we split the right-hand side linear form into cell contributions:

(#»ϕ)j =

Nj∑
l=1

∫
Kl

f(x)bjh|Kl
(x) dx,

where K1, ...,KNj
are the

triangles adjacent to node xj .

xj

K1

K2

K3

K4

K5

Likewise on a single triangle K ∈M we can define

`K(bjh) :=

∫
K

f(x)bjh|K(x) dx = `K(λi), (52)

where λi is the barycentric coordinate function defined in (43). Thus we can rewrite

(#»ϕ)j =
∑

K,i:ai
K=xj

`K(λi). (53)

To implement this sort of collecting scheme we would emulate the clumsy and burdensome algorithm

mentioned on page 16 somehow.

xj

∗
∗
∗

 

∗
∗
∗

 

∗
∗
∗

 
∗
∗
∗

 

∗
∗
∗

 

1

2

3

3

2

3
2

3

3

1

21

1

2

1

Figure 17: (#»ϕ)j by summing diagonal entries of element vectors of adjacent triangles

2 DISCRETIZATION Contents 19

But we have a better choice, that is to compute #»ϕ in a cell-oriented fashion, in which way we end up

with a counterpart analogous to the element (stiffness) matrix from (47), the

element (load) vector: #»ϕK := [`K(λi)]
3
i=1 ∈ R3. (54)

ϕK,1

ϕK,2

ϕK,3


#»ϕK =

1

2

3

Figure 18: Cell-oriented assembly of right-hand side vector by distribution from element vectors

Now we consider how to compute #»ϕK . We know that in 1D, by trapezoidal rule, we can approximate∫ b
a
f(x) dx by accumulating integrals on many small trapezoids. We can extend it to 2D:

−→

K

f(a1)

f(a2)

f(a3)

z0
=(f(a1)+f(a2)+f(a3))/3

a1

a2 a3

x

y

for triangle K with vertices a1,a2,a3∫
K

f(x) dx ≈ |K|
3

(
f(a1) + f(a2) + f(a3)

)
. (55)

Thus noting the cardinal basis property (30) we obtain

#»ϕK := [`K(λi)]
3
i=1 ≈

|K|
3

f(a1)

f(a2)

f(a3)

 . (56)

This formula can be used for our computation of the element vector. The algorithm that assembles the

right-hand side vector will be presented in Section 4.3 in a more generic fashion.

3 ERROR ANALYSIS Contents 20

3 Error Analysis

A rigorous and complete analysis for the error estimates of finite element methods is very complicated,

which involves lots of techniques and expertise. Therefore, here we will only show some conclusions that

will be used to verify our numerical experiments in Section 5 and Section 6.4. For more information

about FEM error analysis one can refer to our text [Li10, Section 2.2, 2.8] or this paper [GB05] by

Thomas Grätsch and Klaus-Jürgen Bathe.

For p-th order finite elements, the error measured in the L∞-norm is of order O(hp+1)

‖u− uh‖L∞(Ω) ≤ Chp+1‖u‖,

in the L2-norm is of order O(hp+1)

‖u− uh‖L2(Ω) ≤ Chp+1‖u‖,

and in the H1-norm is of order O(hp)

‖u− uh‖H1(Ω) ≤ Chp‖u‖.

4 IMPLEMENTATION Contents 21

4 Implementation

In this section, we discuss the nuts and bolts of the implementation of finite elements methods. However,

implementing a robust, industry-standard FEM library is a demanding job, requiring one to equip with

not only a whole lot of mathematical skills but also exceptional programming ability (especially strong

background in some compiled programming languages, like, C, C++, Fortran). The good news is that we

don’t have to implement one from scratch since there are many well-established libraries out there now

which we can use and learn from. Moreover, in practice, it is recommended that we use those existing

libraries to develop and deploy our own new algorithms for the model problems we need to tackle as it

can significantly reduce the development cycle and save us from onerous debugging nightmares. So we

are not going to implement a fully functional, versatile, and extensible FEM library. Instead, we will

present a minimal implementation in the context of MATLAB, which makes our life easier by providing

us with a tremendous number of built-in handy subroutines (functions), and most of all, as well as a

powerful yet easy-to-use visualization system. But this doesn’t mean our implementation is trivial. We

will cover many important aspects concerning implementing a FEM library.

In fact, many FEM libraries share similar frameworks and modules that specify how the procedure

goes and what results should be yielded in a particular step. Thus it makes sense to have a look at some

successful FEM libraries, from which, at least ideawise, we can draw some considerations.

Hence, we start with looking at an industrial-strength open-source FEM library deal.II, an outline of

how its primary groups of classes (main modules) interact is depicted in the following graph (simplified,

omitted modules PETSc, Trilinos, CUDA, UMFPACK for linear systems and linear solvers):

OpenCASCADE

Mainfold

Mapping Triangulation

FEValues

Quadrature

Linear systems

Finite elements

DoFHandler

Gmsh

Linear solvers

Graphical output

VisIt ParaView

What we will discuss and try to implement is the 3rd level to the 5th level (top down). We shall first

give some brief explanations to the modules in the above graph. For the detailed documentation one can

refer to https://www.dealii.org/current/doxygen/deal.II/index.html.

Mainfolds describe the shape of cells and, more generally, the geometry of the domain on which one

wants to solve an equation. The geometries can be obtained from the 3D modeling kernel OpenCASCADE

via its APIs.

Triangulation module does the meshing job that takes input from the geometries in Mainfold. This

is usually done with the help of some external mesh generation libraries or tools, e.g. Gmsh.

Finite element classes describe the properties of a finite element space as defined on the unit cell.

This includes, for example, how many degrees of freedom are located at vertices, on lines, or in the

interior of cells. In addition, values and gradients of individual shape functions at points on the unit cell

https://dealii.org
https://www.dealii.org/current/doxygen/deal.II/index.html

4 IMPLEMENTATION Contents 22

are also of course provided. The DoFHandler class allocates spaces so that each vertex, line, or cell of

the triangulation has the correct number of them. It also gives them a global numbering.

The quadrature module is a set of rules that describe the location of quadrature points on the unit

cell, and the weights of quadrature points thereon.

Mapping classes make computing the matrix and right-hand side entries or other quantities on each

cell of a triangulation numerically practical by mapping the shape functions, quadrature points, and

quadrature weights from the unit cell to each cell of a triangulation. The FEValues class is the result

of finite element shape functions and their gradients being evaluated in quadrature points defined by a

quadrature formula when mapped to the real cell.

After knowing the values and gradients of shape functions on individual cells (by FEValues) and

the global numbers of the degrees of freedom on a cell (by DoFHandler), what we should do next is

to assemble the system matrix (and right hand side) of the linear system. This is done in the module

Linear systems. Then we apply some appropriate solvers to solve this linear system of equations, which

is followed by some post-processing visualization if one wants to.

We can clearly see that this outline largely agrees with what we have examined in Section 2, but

with more implementation details. Our own implementation will also cover these aspects though not in

a very systematic way.

4.1 Mesh Generation, Index Mapping, and Mesh Refinement

We will begin with triangulations which are fundamental to finite element methods. In industry, there

are quite a number of choices to do the meshing job, a popular one is Gmsh, which is based around four

modules: Geometry, Mesh, Solver and Post-processing, and it can be used at 3 levels: through the GUI,

through the dedicated .geo language, through the C++, C, Python, and Julia API.[GR09]

Below is an example of Gmsh-constructed and -rendered geometry (mesh) model. It can be expressed

in a few lines of code in the highly-concise .geo language, which can be found in here.

X

Y

Z

Figure 19: A sphere after deleting 3 orthogonal cylinders from its center

In MATLAB we can use its built-in delaunay subroutine for mesh

generation. The Delaunay triangulation, according to Wolfram MathWorld,

is a triangulation which is equivalent to the nerve of the cells in a Voronoi

diagram, i.e., that triangulation of the convex hull of the points in the diagram

in which every circumcircle of a triangle is an empty circle.

https://gitlab.onelab.info/gmsh/gmsh/blob/master/demos/boolean/boolean.geo
https://mathworld.wolfram.com/DelaunayTriangulation.html
https://mathworld.wolfram.com/Triangulation.html
https://mathworld.wolfram.com/Nerve.html
https://mathworld.wolfram.com/VoronoiDiagram.html
https://mathworld.wolfram.com/VoronoiDiagram.html
https://mathworld.wolfram.com/ConvexHull.html
https://mathworld.wolfram.com/Circumcircle.html

4 IMPLEMENTATION Contents 23

The Computational Geometry Algorithms Library (CGAL) which provides easy access to efficient and

reliable geometric algorithms also incorporates a bundle of triangulations and Delaunay triangulations

packages along with a large number of other powerful data structures and algorithms like Voronoi

diagrams, cell complexes and polyhedra, convex hull algorithms, spatial searching and sorting, etc. The

mesh generator DistMesh that developed by Per-Olof Persson and Gilbert Strang in the Department of

Mathematics at MIT is a good alternative as well in the context of MATLAB.

Now we observe the mesh quality generated by the MATLAB delaunay subroutine. For simplicity

and comparison, we assume the computational domain is a square and put the Gmsh counterpart by

side. The results are represented in the two figures below.

(a) A uniform triangular mesh

generated via MATLAB delaunay

(b) A somewhat random triangular

mesh generated via Gmsh

In fact, the subroutine delaunay takes two arguments in 2D with syntax like this: TRI = delaunay(X,Y).

And we of course for convenience chose to use the equidistant points as the input which led to the

uniformly distributed triangular mesh. The Gmsh counterpart appears to be somewhat random but

with almost equally sized cells. It was generated from the Gmsh GUI, possibly under the hood running

some other algorithms in the kernel. The MATLAB code for generating uniform triangular meshes on a

rectangular region is given in Code listing 1.

➊

➋

➌

1

2
3

4

5 6

7

8

9

10

11
12

13

15

14

➊
➊

➊

➊

➊

➊

➊
➊

➊

➊

➊
➊

➊

➊

➊

➋

➋

➋

➋

➋➋

➋

➋➋

➋

➋

➌

➌

➌

➌

➌

➌

➌

➌

➌

➌

➌

➌

➋

➋

➌➌

➋

➋

➌

K17

K5

K4

K10 K11

K12
K13

K14

K9
K8

K7

K6

K3
K16K1

K15

K2

➊

➋

➌

] 1 2 3

K1 5 2 1

K2 3 5 2

K3 6 5 3

K4 4 8 9

K5 9 4 5

K6 5 9 6

K7 10 6 9

K8 10 7 6

K9 14 10 7

K10 11 8 9

K11 9 12 11

K12 9 10 12

K13 10 12 13

K14 13 14 10

K15 15 7 14

K16 6 3 7

K17 1 4 5

Figure 20: Index mapping by d.o.f. mapper

We have learned from Section 2 as well as the deal.II library that the global node numbers and local

vertex numbers are soooo important to the assembly of Galerkin matrices and right-hand side vectors.

https://www.cgal.org/
https://doc.cgal.org/latest/Manual/packages.html#PartTriangulationsAndDelaunayTriangulations
https://doc.cgal.org/latest/Manual/packages.html#PartVoronoiDiagrams
https://doc.cgal.org/latest/Manual/packages.html#PartVoronoiDiagrams
https://doc.cgal.org/latest/Manual/packages.html#PartPolyhedra
https://doc.cgal.org/latest/Manual/packages.html#PartConvexHullAlgorithms
https://doc.cgal.org/latest/Manual/packages.html#PartSearchStructures
http://persson.berkeley.edu/distmesh/

4 IMPLEMENTATION Contents 24

Hence, we zero in on the triangulation numbering and index mapping.

First, we consider the vertices (points/nodes). Simply enough we can use an array for storing them,

specifically, a nP-by-nDim array. That is, there are nP (number of points) rows and each row represents

the point’s coordinates. In the 2D case, we can also use 3 columns to represent the 2D coordinates

leaving the 3rd column (coordinate of z) being 0. This will comply with the 3D case. Thus to number

the vertices we just need to record their corresponding row numbers (indices). These numbers are our

global node numbers.

Then, the elements of the mesh (triangles) can be represented by their corresponding vertex numbers

(indices). Note that we also have to pay attention to the local numbers. Hence we store an element in

the order with respect to the local vertex numbers 1 , 2 , and 3 . This is illustrated in Figure 20 and

we call it index mapping by d.o.f. mapper. Actually, this is also what TRI = delaunay(X,Y) is done

for us: it takes the points (X,Y) and creates a 2D Delaunay triangulation represented by TRI which is

a matrix of size mtri-by-3, where mtri is the number of triangles. Each row of TRI specifies a triangle

defined by indices with respect to the points.

Mathematically, we can denote the local 7→ global index mapping (d.o.f. mapper) by dofh ∈ N]M,3

with the meaning as follows:

dofh(k, l) = global number of vertex l of k-th cell ∈ {1, ..., N},
xdofh(k,l) = al when a1,a2,a3 are the vertices of Kk,

(57)

for l ∈ {1, 2, 3}, k ∈ {1, ...,M}, M :=]M, N :=]V(M).

For example, the three vertices of the pink triangle K7 in Figure 20 can be represented with indices

dofh(7, 1) = 10, dofh(7, 2) = 6, and dofh(7, 3) = 9, respectively.

The d.o.f. mapper dofh as described in (57) in a sense amounts to the DoFHandler class in the deal.ii

library, or rather it is a crude and simple function that implements the index mapping.

Next we give a short discussion about mesh refinement. We know that the accuracy of finite element

methods is closely related to the mesh size hM. So naturally people would like to get finer meshes. We

can achieve this by dividing the existing cells into sub-cells. Take the triangular meshes for an example,

one way is to add 3 more nodes at the midpoints of the 3 edges of a cell and cut this triangle along these

new edges connected by the midpoints. Thus a triangular cell is divided into four congruent half-sized

triangles.

Method 1 Method 2

Another approach for the triangular meshes is to add some node(s) inside a cell, for instance, adding

a new node in the barycenter of a triangle. Adding more than one inner point is also possible (e.g. adding

one node in the barycenter then another node, again, at the barycenter of a divided sub-triangle). In

practice, the first approach is often adopted as it creates regular/uniform finer meshes, which is usually

desirable.

In the end, it should be emphasized that the triangulation or mesh refinement should not contain or

give rise to any “hanging nodes”, that is it shouldn’t violate the restriction that each triangle side (if not

a boundary edge) is entirely shared by two adjacent triangles (implied by principle (iv) of triangulation

as defined on page 5).

4 IMPLEMENTATION Contents 25

4.2 Local Computations

In Section 2.2.3 we have explored how to compute the Galerkin matrix with omitting the diffusion

coefficient α as well as the whole second term γ(x)u in (3) for the sake of simplicity. Now we add them

back and focus on the computation of the element matrix that corresponds to the bilinear form

a(u, v) =

∫
Ω

α(x)gradu · grad v + γ(x)uv dx, u, v ∈ H1(Ω).

The element matrix for the above bilinear form is analogous to the one presented in (47), that is

AK := [aK(λi, λj)]
3
i,j=1 ∈ R3,3, (58)

aK(λi, λj) =

∫
K

α(x)gradλi · gradλj + γ(x)λiλj dx, (59)

where λi, λj are the barycentric coordinate functions defined in (43).

We start our investigation from a lemma below, which comes in handy in a few situations.

Lemma 4.1 (Integration of powers of barycentric coordinate functions [Hip21, Lemma 2.7.5.5]). For

any non-degenerate d-simplex K with barycentric coordinate functions λ1, ..., λd+1 and exponents αj ∈
R, j = 1, ..., d+ 1,∫

K

λα1
1 · · ·λ

αd+1

d+1 dx = d! |K| α1!α2! · · · · · ·αd+1!

(α1 + α2 + · · ·+ αd+1 + d)!
∀α ∈ Rd+1.

A direct application of this lemma for now is to compute the element mass matrix

AKM
:=

[∫
K

λiλj dx

]3

i,j=1

∈ R3,3.

In fact, applying the above lemma with d = 2 we immediately obtain∫
K

λ`(x) dx =
|K|
3
,

∫
K

λ`(x)2 dx =
|K|
6
,

∫
K

λi(x)λj(x) dx =
|K|
12

, (60)

which suggest we can compute the element mass matrix by

AKM
=
|K|
12

2 1 1

1 2 1

1 1 2

 . (61)

Equipped with this formula we are now able to solve the following PDE model problem:

−∆u+ ku = f,

where k is a constant.

Of course, all the stuff we have studied before will also be used.

Woohoo! But wait a minute, what we get in here is an augmented version, γ(x) is not necessarily a

constant, plus we have the scary first term in (59) to handle, which seems nontrivial at all.

Hence, we turn to an approximation technique called quadrature rules that use weighted sum of

function values at specific points to approximate the definite integral of a function. And we call such a

way of doing this on an element K ∈M a local quadrature rule, which can be expressed as follows:∫
K

f(x) dx ≈
PK∑
l=1

ωKl f(ξKl), ξKl ∈ K, ωKl ∈ R, PK ∈ N. (62)

Here, ωKl are the weights, ξKl are the quadrature points, and P means P -point local quadrature rule.

Typically, these quadrature points defined by a quadrature formula are known on reference elements,

that is, e.g. the unit interval [0, 1] ∈ R in 1D, the unit triangle connected by points (0, 0), (1, 0), (0, 1) ∈
R2 in 2D. Moreover, the function values and their gradients on a reference element can be rather easily

computed. So an important step is to transform the quadrature points from the unit cell (reference

element) to a real cell of a mesh. Then we are able to evaluate the function values and gradients on the

real cells and subsequently compute (59). To achieve these we shall make a few preparations.

4 IMPLEMENTATION Contents 26

Local Shape Functions

First, we introduce an important notion appeared in the outline of deal.ii library on page 21, which is

shape functions. In fact, we have encountered shape functions at the very beginning—the basis functions

bih are actually also called global shape functions (GSF)/global basis functions/degrees of freedom

(DOFs). What we are currently interested in is the local shape functions, defined as below.

Definition 4.1 (Local shape functions (LSF)). Given a finite element function space on a meshM
with global shape functions bih, i = 1, ..., N , for every mesh entity K we define

{bjK}
Q(K)
j=1 := {bjh|K ,K ⊂ interior of supp(bjh)} := set of local shape functions (LSF),

that is the local shape functions are the basis functions that cover K, restricted to K.

Note that Q(K) is the number of local shape functions on the cell K, e.g. Q(K) = 3 for a triangular

cell and Q(K) = 4 for a quadrilateral cell.

It turns out that on a triangular mesh there are exactly 3 local shape functions on each cell K, which

indeed are the barycentric coordinate functions λ1, λ2, λ3 introduced in Section 2.2.3.

Below is an important example of local shape functions on the unit triangle K̂ with vertices a1
K̂

=[
0

0

]
, a2

K̂
=

[
1

0

]
, and a3

K̂
=

[
0

1

]
:

x2
x1

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

(a) b1
K̂

(x) := 1− x1 − x2

x2
x1

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

(b) b2
K̂

(x) := x1

x2
x1

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

(c) b3
K̂

(x) := x2

Figure 21: Local shape functions on the unit triangle K̂

We call the above local shape functions on the unit triangle (reference element) K̂ reference shape

functions for the sake of convenience. These reference shape functions are simple enough to evaluate

their function values and gradients since their analytic formulas are directly known and are arguably the

most straightforward affine linear functions in 2D.

Affine Equivalence

Next, we introduce the affine transformation of triangles and pullback of functions, both of which are

very practical and useful.

Lemma 4.2 (Affine transformation of triangles [Hip21, Lemma 2.7.5.14]). For any non-degenerate

triangle K ⊂ R2 (|K| > 0) with numbered vertices there is a unique affine transformation ΦK , ΦK(x̂) =

FK x̂+ τK , with K = ΦK(K̂) and preserving the numbering of the vertices.

This lemma tells us that all cells of a triangulation are affine images of the unit triangle K̂, see

Figure 22 for an illustration. For a general triangle K with vertices a1,a2,a3, the affine mapping

ΦK(x̂) := FK x̂+ τK can be set with FK :=
[
a2 − a1 a3 − a1

]
, τK := a1, i.e.

FK :=

[
a2

1 − a1
1 a3

1 − a1
1

a2
2 − a1

2 a3
2 − a1

2

]
, τK :=

[
a1

1

a1
2

]
. (63)

4 IMPLEMENTATION Contents 27

1 x̂1

1

x̂2

K̂

1 2

3

a1

a2

a3

K

ΦK(x̂) = FK x̂+ τK

Figure 22: The affine mapping ΦK that transforms the unit triangle K̂ to a general triangle K

Definition 4.2 (Pullback). Given domains Ω, Ω̂ ⊂ Rd and a bijective mapping Φ : Ω̂ 7→ Ω, the

pullback Φ∗u : Ω̂ 7→ R of a function u : Ω 7→ R is a function defined on Ω̂ by

Φ∗u(x̂) := u(Φ(x̂)), x̂ ∈ Ω̂.

What the definition above is saying can be visualized in the following picture. Here is also an

excellent explanation for pullback, which can be summarized as geometric objects (e.g. points, vectors)

“go forward” and functions on them “go back”.

Φ

Φ∗

Ω̂

Ω

Φ∗u defined here u defined here

We’re concerned with the pullback of local shape functions. Let K ∈M, K̂ be the unit triangle, and

ΦK the unique affine mapping K̂ 7→ K, which respects the local numbering of the vertices of K̂ and K:

ΦK(âi) = ai, i = 1, 2, 3. We write

� b1K , b
2
K , b

3
K for the local shape functions on K, and

� b̂1, b̂2, b̂3 for the local shape functions on K̂, i.e. reference shape functions (see Figure 21),

then we have a fundamental relationship in regard to the pullback Φ∗K :

b̂i = Φ∗Kb
i
h ⇔ b̂i(x̂) = biK(x), x = ΦK(x̂). (64)

This relationship is illustrated in Figure 23 which takes b̂1 7→ b1K for an example. A direct observation

can be made from the fact that b̂1(A) = b1K(A′) = 1, b̂1(B) = b1K(B′) = b̂1(C) = b1K(C ′) = 0. For a

general case where the point P ∈ K̂, and the transformed point P ′ = ΦK(P) ∈ K, all we have to do is

notice a property that affine transformation possesses: it preserves the ratios of the lengths of parallel

line segments. Therefore,

|EF |
|BC|

=
|E′F ′|
|B′C ′|

, ⇒ |AP |
|AH|

=
|A′P ′|
|A′H ′|

, ⇒ |PQ|
|AD|

=
|P ′Q′|
|A′D′|

.

Note that |AD| = |A′D′| = 1, thus we obtain b̂i(P) = |PQ| = |P ′Q′| = biK(P ′), which proves (64).

https://math.stackexchange.com/a/1189772
https://en.wikipedia.org/wiki/Affine_transformation

4 IMPLEMENTATION Contents 28

A

B

C

D

E

F

H
P

Q

A′

B′

C′

D′

E′

F′

H′

P′

Q′

x = ΦK(x̂) = FK x̂+ τK

Figure 23: The affine mapping ΦK preserves the values of local shape functions:

P ∈ K̂, P ′ = ΦK(P) ∈ K, ⇒ b̂i(P) = |PQ| = |P ′Q′| = biK(P ′).

Local Quadrature

With the above preliminaries we are now all set for the final work of computing the element matrix in

(58, 59). Let’s dive in.

We write ΦK(x̂) := FK x̂ + τK for the affine transformation from the reference triangle K̂ to the

general triangle K. By the transformation formula for integrals we can pull back integrals over K to K̂:∫
K

f(x) dx =

∫
K̂

f(ΦK(x̂)) |det FK |dx̂. (65)

Combining this formula with (62) yields∫
K

f(x) dx ≈ |det FK |
P∑
l=1

ω̂l f(ΦK(ξ̂l)). (66)

The above formulas can be used for computing the element reaction matrix (the second term) in (59):∫
K

γ(x) λi(x)︸ ︷︷ ︸
= biK(x)

λj(x)︸ ︷︷ ︸
= bjK(x)

dx

=

∫
K̂

γ(ΦK(x̂)) biK(ΦK(x̂))︸ ︷︷ ︸
by (64), = b̂i(x̂)

bjK(ΦK(x̂))︸ ︷︷ ︸
= b̂j(x̂)

|det FK |dx̂

= |det FK |
P∑
l=1

ω̂l γ(ΦK(ξ̂l)) b̂
i(ξ̂l) b̂

j(ξ̂l). (67)

Here, ΦK(ξ̂l), l = 1, ..., P are the transformed quadrature points, which together with |det FK | can

be computed by (63), and the reference shape functions values b̂i(ξ̂l), i = 1, 2, 3, l = 1, ..., P on the

quadrature points ξ̂l defined on K̂ can be precomputed by [1-x1-x2,x1,x2] with (x1,x2) being these

quadrature points.

The element vector (54) can also be computed thus:

(#»ϕK)i =

∫
K

f(x)biK(x) dx =

∫
K̂

f(ΦK(x̂)) b̂i(x̂) |det FK |dx̂

= |det FK |
P∑
l=1

ω̂l f(ΦK(ξ̂l)) b̂
i(ξ̂l). (68)

See Code listing 6 for its MATLAB implementation.

4 IMPLEMENTATION Contents 29

So, now there is only the first term (the element diffusion matrix) in (59) left. Let’s zero in on it.

This time we will write f(ΦK(x̂)) as the pullback form (Φ∗Kf)(x̂), then∫
K

α(x)grad biK(x) · grad bjK(x) dx

=

∫
K̂

(Φ∗Kα)(x̂)(Φ∗K(grad biK)︸ ︷︷ ︸
= ?

)(x̂) · (Φ∗K(grad bjK)︸ ︷︷ ︸
= ?

)(x̂) |det DΦK(x̂) |dx̂. (69)

The vexing problem is how do we compute the = ? parts in (69)? The local shape functions biK ,

(affine) linear functions though, are sort of elusive. One may think of using the brute-force way of doing

it, that is to calculate the analytic formulas (planes) of the local shape functions on the general triangle

K, and consequently their gradients can be computed. This sounds not that scary, huh? Well, but

actually we don’t have to do so. The following lemma leads to a cleaner and faster solution.

Lemma 4.3 (Transformation formula for gradients [Hip21, Lemma 2.8.3.10]). For differentiable u :

K 7→ R and any diffeomorphism Φ : K̂ 7→ K we have

(gradx̂(Φ∗u))(x̂) = (DΦ(x̂))> (gradxu)(Φ(x̂))︸ ︷︷ ︸
=Φ∗(gradu)(x̂)

∀x̂ ∈ K̂.

Proof. By the chain rule the components of the gradient vector become

(grad Φ∗u(x̂))i =
∂Φ∗u

∂x̂i
(x̂) =

∂

∂x̂i
u(Φ(x̂)) =

d∑
j=1

∂u

∂xj
(Φ(x̂))

∂Φj

∂x̂i
(x̂),

then in the vector form we have
∂Φ∗u

∂x̂i
(x̂)

...
∂Φ∗u

∂x̂d
(x̂)

 = (gradx̂(Φ∗u))(x̂) = (DΦ(x̂))>


∂u

∂xi
(Φ(x̂))

...
∂u

∂xd
(Φ(x̂))

 = (DΦ(x̂))>(gradxu)(Φ(x̂)).

Here, DΦ(x̂) ∈ Rd,d is the Jacobian of Φ at x̂ ∈ K̂, the general formula for Jacobian matrix is

Df(x) =

[
∂fi
∂xj

]m,n
i,j=1

=


∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

...
. . .

...
∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)

 ∈ Rm,n

�

Therefore, by using the above lemma we arrive at∫
K

α(x)grad biK(x) · grad bjK(x) dx

=

∫
K̂

α(ΦK(x̂))
(

(DΦK(x̂))−>gradx̂b̂
i(x̂)

)
·
(

(DΦK(x̂))−>gradx̂b̂
j(x̂)

)
|det DΦK(x̂) |dx̂

=

P∑
l=1

ω̂lα(ΦK(ξ̂l))
(

(DΦK(ξ̂l))
−>grad b̂i(ξ̂l)

)
·
(

(DΦK(ξ̂l))
−>grad b̂j(ξ̂l)

)
|det DΦK(ξ̂l) | (70)

= |det FK |
P∑
l=1

ω̂lα(ΦK(ξ̂l))
(
F−>K grad b̂i(ξ̂l)

)
·
(
F−>K grad b̂j(ξ̂l)

)
. (71)

Terrific! The formula (71) for the entries of the element diffusion matrix is totally manageable!

And in the linear finite element method, the gradients of the reference shape functions b̂1, b̂2, b̂3 are

ever straightforward—they are constants which can be written as [-1 -1;1 0;0 1] in MATLAB. The

MATLAB implementation for computing the element matrix (58, 59) is given in Code listing 4.

https://en.wikipedia.org/wiki/Diffeomorphism

4 IMPLEMENTATION Contents 30

4.3 Assembly Algorithms

Now we present the generic assembly algorithms for the Galerkin matrix and the right-side vector with

introducing an abstract “d.o.f. mapper/handler” facility locglobmap, defined as follows:

locglobmap(K, i) = j, if bjh|K = biK , i = {1, ..., Q(K)}.

Note that according to Definition 4.1 every mesh entity K is also endowed with a set of local shape

functions {b1K , ..., b
Q(K)
K }, not merely cells.

The locglobmap can be deemed as the generalized version of dofh introduced in (57), with a

relationship by

dofh(k, l) = locglobmap(K, l), if K has index k, l ∈ {1, 2, 3}.

The abstract algorithms are given below. Typically, on a triangular mesh Q(K) ≡ 3 holds for all

mesh entities K ∈M.

Algorithm 3 Abstract assembly routine for finite element Galerkin matrices

1: procedure assembleGalerkinMatrix(Mesh M)

2: A = N ×N sparse matrix . allocate zero sparse matrix

3: for all K ∈M do . loop over all cells

4: Q(K) = no loc shape functions(K)

5: AK = getElementMatrix(K) . compute element matrix, see (49, 50, 61)/(67, 71)

6: Vector idx = {locglobmap(K, 1), ..., locglobmap(K,Q(K))} . get global indices

7: for i = 1 to Q(K) do

8: for j = 1 to Q(K) do

9: A(idx(i), idx(j)) += AK(i, j) . see Figure 16

10: end for

11: end for

12: end for

13: return A

14: end procedure

Algorithm 4 Generic assembly algorithm for finite element R.H.S. vectors

1: procedure assembleRhsVector(Mesh M)

2:
#»ϕ = Vector(N) . preallocate appropriate memory

3: for all K ∈M do . loop over all cells

4: Q(K) = no loc shape functions(K)

5:
#»ϕK = getElementVector(K) . compute element vector, see (56)/(68)

6: Vector idx = {locglobmap(K, 1), ..., locglobmap(K,Q(K))} . get global indices

7: for i = 1 to Q(K) do

8:
#»ϕ(idx(i)) = #»ϕ(idx(i)) + #»ϕK(i) . see Figure 18

9: end for

10: end for

11: return #»ϕ

12: end procedure

4.4 Incorporation of Boundary Conditions

Up to this point, we have finished the local computations of the element Galerkin matrix and the element

vector as well as the assembly process. Thus there is only one thing left before we solve the linear system

of equations, that is the imposition of boundary conditions. Here we will focus on two kinds of boundary

conditions: Dirichlet boundary conditions and Neumann boundary conditions, the former of which are

4 IMPLEMENTATION Contents 31

also referred to as essential boundary conditions because they are directly imposed on trial space and

(in homogeneous form) on test space, and the latter of which are also referred to as natural boundary

conditions because they are enforced only through the variational equation (the Neumann boundary

conditions “naturally” emerge when removing constraints on the boundary).

In Section 1 we considered the simplest homogeneous Neumann problem for the purpose of developing

the Galerkin discretization strategy with relative ease. Now we first examine the non-homogeneous

Neumann boundary value problem

−∇ · (α(x)∇u) + γ(x)u = f, in Ω,

α(x)∇u · n = gn, on ∂Ω.
(72)

The corresponding variational formulation is

u ∈ H1(Ω) :

∫
Ω

(α(x)∇u · ∇v + γ(x)uv) dx =

∫
Ω

fv dx+

∫
∂Ω

gnv ds ∀v ∈ H1(Ω). (73)

Substituting the test function v with (14) the right-hand side becomes∫
Ω

fvh dx+

∫
∂Ω

gnvh ds =

N∑
i=1

νi

[
`(bih) +

∫
∂Ω

gnb
i
h ds

]
. (74)

Hence, compared to the right-hand side vector derived in (15–20) we just need

to add
∫
∂Ω
gnb

i
h ds to each component of the right-hand side vector #»ϕ. Note that∫

∂Ω
gnb

i
h ds is non-zero only when the vertex xi is on the boundary ∂Ω, therefore

only the additions to the components whose indices are the global node numbers of

boundary vertices are required, in which cases the additions become

∆ #»ϕi =

∫
∂Ω

gnb
i
h ds =

∫
e1

+

∫
e2

gnb
i
h ds, e1, e2 ∈ EB(M), e1 ∩ e2 = xi ∈ VB(M). (75)

These contributions can also be computed by cell-oriented or rather (boundary) edge-oriented assembly

on M|∂Ω, that is we traverse each boundary cell K/edge e and then distribute the cell contribution to

the two vertices of the edge e. Note that on each boundary cell K only the two local shape functions

whose nodal values are over the two vertices of the edge e do have contributions.

To implement this one must at least provide a facility or a mesh data structure that enables us to

loop over the boundary edges of a particular type (Neumann, Dirichlet, Robin, etc). The Nektar++

framework which uses XML to specify the boundary conditions by tags and values [Can+15] is a great

resource that we can learn from.

Next, consider the non-homogeneous Dirichlet boundary value problem

−∇ · (α(x)∇u) + γ(x)u = f, in Ω, (76)

u = gd, on ∂Ω, (77)

with variational formulation

u ∈ H1(Ω)

u = gd on ∂Ω
:

∫
Ω

(α(x)∇u · ∇v + γ(x)uv) dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω). (78)

A problem arises if we as before use U = V , since in this way u ∈ U = V ⊂ H1
0 (Ω) which conflicts

with the non-homogeneous essential boundary condition (77).

Therefore, we introduce a small trick—offset functions, which can be used to convert (78) into a

variational problem with the same trial and test space:

(78) ⇔ u = u0 + w, w ∈ H1
0 (Ω) : a(w, v) = `(v)− a(u0, v) ∀v ∈ H1

0 (Ω), (79)

with offset function u0 ∈ H1(Ω) satisfying

u0 = gd on ∂Ω. (80)

4 IMPLEMENTATION Contents 32

So, in order to obtain the Galerkin solution uh = u0 + wh all we need to do is find

wh ∈ V0,h := S0
1,0(M) : a(wh, vh) = `(vh)− a(u0, vh) ∀vh ∈ V0,h. (81)

The finite element subspace V0,h := S0
1,0(M) ⊂ H1

0 (M) is obtained by

S0
1,0(M) := S0

1 (M) ∩H1
0 (M) = span{bjh : xj ∈ Ω (interior node)},

that is by dropping all those nodal basis functions (global shape functions) associated with nodes on ∂Ω.

“Location” of nodal basis functions:

, → nodal basis functions of S0
1 (M)

→ nodal basis functions of S0
1,0(M)

→ maximum support of offset function u0:

supp(u0) ⊂
⋃
{K ∈M : K ∩ ∂Ω 6= ∅}.

We write

B0 := {b1h, ..., b
N0

h } =̂ nodal basis of S0
1,0(M)

(tent functions associated with interior nodes),

B := B0 ∪ {bN0+1
h , ..., bNh } =̂ nodal basis of S0

1 (M)

(extra basis functions associated with nodes ∈ ∂Ω).

Here, N :=]V(M) = dimS0
1 (M) (no. of total nodes),

N0 :=]{x ∈ V(M),x /∈ ∂Ω} = dimS0
1,0(M) (no. of interior nodes).

Moreover, we denote

A0 ∈ RN0,N0 =̂ Galerkin matrix for discrete trial/test space S0
1,0(M),

A ∈ RN,N =̂ Galerkin matrix for discrete trial/test space S0
1 (M).

Then the Galerkin matrix A can be partitioned into four blocks:

A =

[
A0 A0∂

A>0∂ A∂∂

]
,

A0∂ :=
(
a(bjh, b

i
h)
)

i=1,...,N
j=N0+1,...,N

∈ RN0,N−N0 ,

A∂∂ :=
(
a(bjh, b

i
h)
)
i=N0+1,...,N
j=N0+1,...,N

∈ RN−N0,N−N0 .

Thus if we ignore the essential boundary conditions and assemble the linear system of equations we

can write A #»µ = #»ϕ in the block-partitioned form:[
A0 A0∂

A>0∂ A∂∂

] [
#»µ0
#»µ∂

]
=

[
#»ϕ0
#»ϕ∂

]
. (82)

Here, #»µ0 =̂ coefficients for interior basis functions b1h, ..., b
N0

h ,
#»µ∂ =̂ coefficients for basis functions bN0+1

h , ..., bNh associated with nodes located on ∂Ω.

Be aware that the coefficient vector #»µ amounts to the finite element approximation of u, therefore

#»µ∂ = #»γ := values of gd at boundary nodes, (83)

4 IMPLEMENTATION Contents 33

which means we can compute #»µ0 by

A0
#»µ0 = #»ϕ0 −A0∂

#»γ . (84)

We can also change the matrix and right-hand side of the linear system of equations A #»µ = #»ϕ in a

way such that it would transform (82) into[
A0 A0∂

0 I

] [
#»µ0
#»µ∂

]
=

[
#»ϕ0
#»γ

]
. (85)

Our initial aim is to obtain #»µ0 = [µ1,, µN0]> since its components are the coefficients of the basis

expansion of wh in space S0
1,0(M), i.e. wh =

∑N0

i=1 µib
i
h. But (85) suggests we can meanwhile obtain the

whole approximate solution #»µ on the mesh M.

One might ask why bother deriving these and why not just directly use (82) to compute our final

solution for the Dirichlet boundary value problem (76, 77)? And thus we don’t even need to make any

modifications on the Galerkin matrix A and the right-hand side vector #»ϕ.

Yes, the solutions of (82) and (85) are exactly the same. The reason why we derived (85) and

prefer it is because in practice the fixed degrees of freedom (global shape/basis functions) corresponding to

components of #»γ are usually rather erratically dispersed among all DOFs, as opposed to being numbered

in a way to yield a nice block-partitioning as in (82).

If we let A∗ represent the practical Galerkin matrix for the discrete trial/test space S0
1 (M), and the

corresponding coefficient vector and right-hand side vector be #»µ∗,
#»ϕ∗ respectively, then we can show

that the solution of the original linear system of equations A∗
#»µ∗ = #»ϕ∗ is different from the one of

(82) and consequently different from that of (85) (otherwise why bother to take the Dirichlet boundary

condition (77) into account!).

To verify this we only need to show that the transformation between the two linear systems of

equations [
A∗

#»µ∗
#»ϕ∗
]
→

[
A0 A0∂

#»µ0
#»ϕ0

A>0∂ A∂∂
#»µ∂

#»ϕ∂

]
can not be obtained by simply switching rows.

This is actually very obvious: when we transform

[
#»µ∗

#»ϕ∗
]
→

[
#»µ0

#»ϕ0
#»µ∂

#»ϕ∂

]
by row-switching, all the interior DOFs of A∗ are also transformed into the first N0 rows, but in order

to obtain A0 we still need some extra swapping operations on the columns of A∗.

In practice, we leverage the scattered version of (85), that is, we first find the positions (global indices)

of those boundary DOFs, then set all these rows of A∗ to 0 with exceptions that in each of these rows

set the entry whose column number is equal to its row number with value 1, and set these rows of #»ϕ∗ to

its corresponding Dirichlet data #»γ .

Lastly, have a look at the mixed Neumann-Dirichlet problem

−∇ · (α(x)∇u) + γ(x)u = f, in Ω,

u = gd, on Γ ⊂ Ω,

α(x)∇u · n = gn, on ∂Ω \ Γ,

(86)

with variational formulation

u ∈ H1(Ω)

u = gd on Γ
:

∫
Ω

(α(x)∇u · ∇v + γ(x)uv) dx =

∫
Ω

fv dx+

∫
∂Ω\Γ

gnv ds (87)

for all v ∈ H1(Ω) with v|Γ = 0.

Equipped with the knowledge learned in this subsection we just need to modify the integral domain

in (75) with ∂Ω \ Γ and restrict the Dirichlet data #»γ only to Γ, and then combine them both. Tada!

Done! Everything runs in a similar manner as above.

4 IMPLEMENTATION Contents 34

4.5 Considerations for Higher Order Finite Elements

This subsection attempts to give some supplementary information about higher order finite elements, in

particular, the quadratic Lagrangian finite elements will be considered under the context of two-point

boundary value problems. (Disclaimer: We will only provide some basic ideas here, never meant to be

rigorous or complet. It may also contain incorrekt information.)

Still, we consider problem P1. This time we will use (piecewise) quadratic functions to approximate

the solution instead of linear functions as in Section 2.1.3. Similarly, we denote the piecewise quadratic

function space by

S0
2,0(M) :=

{
v ∈ C0[a, b] : v|[xi−1,xi] quadratic,

i = 1, ...,M, v(a) = v(b) = 0

}
,

N := dimS0
2,0(M) = 2M − 1.

We first give an visual of the quadratic Lagrangian interpolation (basis) functions:

x1 x2 x3 · · ·a = x0 b = xM

1

←−

The interpolation nodes are comprised of

the interior nodes and midpoints, i.e.

N := VI(M) ∪ {midpoints of intervals}.

Here the green parts are only for the space

S0
2 (M) :=

{
v ∈ C0[a, b] : v|[xi−1,xi] quadratic, ∀i = 1, ...,M

}
,

N := dimS0
2 (M) = 2M + 1.

The space S0
2 (M) will be used instead when dealing with non-homogeneous Dirichlet TPBVPs.

We can see that these basis functions satisfy the augmented nodal value property (∪ nodal values

at midpoints) and they can be split into two categories: one corresponds to the interior nodes and the

other corresponds to the midpoints of those intervals. We denote them by bih, i = 1, ...,M − 1 and

b
i+ 1

2

h , i = 0, ...,M − 1 respectively. For example, in the above picture, the red solid graph represents b2h

whose support spans two adjacent intervals and the magenta solid graph represents b
2 1

2

h whose support

only spans one interval.

If we restrict our attention onto one interval, we can extract three local shape functions, whose

standard versions (reference shape functions, on [0, 1]) can be rather easily acquired and are shown

below. For the sake of comparison we also plot the reference shape functions of 1st order on its left.

0

1

0 1

b1
K̂

= ξ

b2
K̂

= 1− ξ

0

1

0 0.5 1

b1
K̂

= (2ξ − 1)(ξ − 1)

b2
K̂

= 4ξ(1− ξ)
b3
K̂

= ξ(2ξ − 1)

Since bih, i = 1, ...,M − 1 and b
i+ 1

2

h , i = 0, ...,M − 1 are the basis functions of the quadratic finite

element space S0
2,0(M), then the Galerkin approximation uh ∈ Uh := S0

2,0(M) can be uniquely expressed

in their linear combinations

uh =

M−1∑
i=1

µib
i
h +

M−1∑
i=0

µi+ 1
2
b
i+ 1

2

h ,

4 IMPLEMENTATION Contents 35

with

µi = uh(xi), µi+ 1
2

= uh(xi+ 1
2
),

that is the basis expansion coefficients are given by the function values of uh at these interpolation nodes.

The Galerkin matrix now becomes a (2M − 1)-by-(2M − 1) matrix with entries

(A)ij = a(bjh, b
i
h) =

∫ b

a

(
p

dbjh
dx

dbih
dx

+ qbjhb
i
h

)
dx, i, j =

1

2
, 1, ..., (M − 1)

1

2
.

Of course, the fractional indices may sound a little odd. Therefore in practice we use the transformation

(i, j) → (s, t) := (2i, 2j)

to locate the real positions of the entries.

The element matrix is defined on a cell [xi−1, xi] by

AK :=
[
aK(bjK , b

l
K)
]3
j,l=1

=

[∫ xi

xi−1

(
p

dbjK
dx

dblK
dx

+ qbjKb
l
K

)
dx

]3

j,l=1

.

Doing the linear transformation x = xi−1 + hit, hi := xi − xi−1 we can compute the entries of the

element matrix by

(AK)jl =

∫ xi

xi−1

(
p

dbjK
dx

dblK
dx

+ qbjKb
l
K

)
dx

=

∫ 1

0

p(xi−1 + hit)
d

= b̂j(t)︷ ︸︸ ︷
bjK(xi−1 + hit)

hi dt
d

= b̂l(t)︷ ︸︸ ︷
blK(xi−1 + hit) +

∫ 1

0

q(xi−1 + hit)

= b̂j(t)︷ ︸︸ ︷
bjK(xi−1 + hit)

= b̂l(t)︷ ︸︸ ︷
blK(xi−1 + hit) hi dt

=
1

hi

∫ 1

0

p(xi−1 + hit)
db̂j(t)

dt

db̂l(t)

dt
dt+ hi

∫ 1

0

q(xi−1 + hit) b̂
j(t) b̂l(t) dt.

Here b̂j(t) := bj
K̂

(t), j = 1, 2, 3 and hence

db̂1(t)

dt
= 4t− 3,

db̂2(t)

dt
= 4− 8t,

db̂3(t)

dt
= 4t− 1.

The element vector is defined on an interval [xi−1, xi] by

#»ϕK :=
[
`K(bjK)

]3
j=1

=

[∫ xi

xj−1

f(x)bjK(x) dx

]3

j=1

,

with entries

(#»ϕK)j = hi

∫ 1

0

f(xi−1 + hit) b̂
j(t) dt.

Once acquired the element matrices and element vectors we would like to assemble the linear system

of equations. This process is illustrated in Figure 24.

We will apply a little trick here. First, it should be noticed that in the 1st cell and last cell there

are only two local shape functions in them respectively, that is, b1K (right half of b0h) is absent in [x0, x1]

and b3K (left half of bMh) is absent in [xM−1, xM]. This means the 1st element matrix should remove all

the entries concerning b1K which are the 1st row and the 1st column, and the last element matrix should

get rid of all the entries related to b3K which are the 3rd row and the 3rd column. Next, we consider the

assembly process in a way that it were in S0
2 (M) (pretend each cell has full/3 local shape functions),

which will lead to a (2M + 1)-by-(2M + 1) Galerkin matrix A. The assembly is done by looping over all

5 NUMERICAL EXPERIMENTS Contents 36

cells (loop variable j = 1, ...,M−1) and putting the two adjacent element matrices (corresponding to the

cell [xj−1, xj] and cell [xj , xj+1] respectively) together in a manner such that the a33 (lower right) entry

of the former element matrix coincides with the a11 (upper left) entry of the latter element matrix. The

value at this coinciding position is the sum of these two entries. After the loop we just need to extract

and reassign the Galerkin matrix: A ← A(2:2M,2:2M).

The assembly of the RHS vector is done in the exactly same manner: by letting the 3rd entry of the

former element vector coincide with the 1st entry of the latter element vector and then summing them

up. Finally, let phi ← phi(2:2M).

xi−1 xi xi+1xi− 1
2

xi+ 1
2

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

  ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 

+

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

. . .
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗





i-th cell

(i+1)-th cell+

Figure 24: Assembly of quadratic FE Galerkin matrix

5 Numerical Experiments

In this section, we are going to give some numerical examples that use the Galerkin finite element method

studied in previous sections to solve some boundary value problems. A few more examples are provided

in Section 6.4 as comparisons to the weak Galerkin (WG) FEM.

5.1 Example 1

Our first example is a mixed Neumann-Dirichlet boundary value problem:

−∆u = 2π2 cos(πx) cos(πy), in Ω

∇u · n = π sin(πx) cos(πy), on Γ

u = cos(πx) cos(πy), on ∂Ω \ Γ,

where Ω = {(x, y) | − 1
2 < x < 1, −1 < y < 1}, Γ = {(x, y) |x = − 1

2 , −1 ≤ y ≤ 1}.

5 NUMERICAL EXPERIMENTS Contents 37

Here, the analytic solution is u = cos(πx) cos(πy). We used the Galerkin discretization scheme for

linear finite elements developed in Section 2 to solve this BVP. We first give an visual of the solution:

LFEM solution

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

1.5

exact solution

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

One may find that the height of the two graphs seem

to disagree. The fact is that the linear FEM solution

has some values at some certain points exceed 1

which is the maximum value of the analytic solution

and is represented in the right-hand side graph.

The exceeding values are actually very small. The

detailed discretization errors in various norms are

shown in Table 2 below. By the way, if we adopt the

general way of computing the right-hand side vector

studied in Section 4.2, i.e. by (68) as opposed to

(56), we can indeed gain the same looking of graph

as the right-hand side one.
101 102 103 104

dofs [log]

10-4

10-3

10-2

10-1

100

101
er

ro
r

[l
og

]

maximum norm

L2 norm
rate 2

H1 semi-norm
rate 1

Figure 25: Convergence rates for Example 1

The visualization of these results in the table is represented in Figure 25. The MATLAB implementation

for Example 1 is given in Code listing 8.

Table 2: Discretization errors and convergence rates in various norms for Example 1

N hM := N−
1
2 ‖eu‖∞ order ‖eu‖L2(Ω) order |eu|H1(Ω) order ‖eu‖H1(Ω) order

25 0.2000 0.6884 0.4015 2.5890 2.6199

81 0.1111 0.1852 1.8942 0.1011 1.9889 1.3244 0.9671 1.3282 0.9800

289 0.0588 0.0474 1.9646 0.0254 1.9931 0.6663 0.9911 0.6668 0.9942

1089 0.0303 0.0119 1.9904 0.0064 1.9979 0.3337 0.9976 0.3338 0.9984

4225 0.0154 0.0030 1.9975 0.0016 1.9994 0.1669 0.9994 0.1669 0.9996

16641 0.0078 0.0007 1.9994 0.0004 1.9999 0.0835 0.9998 0.0835 0.9999

5.2 Example 2

Consider the boundary value problem for Helmholtz equations:

−∆u− k2u = 1, in G =]0, 1[×]0, 1[,

u = 0, on Γ1 = {x = 0, 0 ≤ y ≤ 1} ∪ {0 ≤ x ≤ 1, y = 1},
∇u · n = 0, on Γ2 = {0 ≤ x ≤ 1, y = 0} ∪ {x = 1, 0 ≤ y ≤ 1},

5 NUMERICAL EXPERIMENTS Contents 38

where k = 1, 5, 10, 15, 20, 25.

The implementation for Example 2 is given in Code listing 9 and the results are as follows:

y x

Helmholtz equation with k=1

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.1

0.2

0.3

0.4

y x

Helmholtz equation with k=5

0
0.2

0.4
0.6

0.8
1

0

0.5

1

-2

-1

0

1

2

3

y x

Helmholtz equation with k=10

0
0.2

0.4
0.6

0.8
1

0

0.5

1

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

y x

Helmholtz equation with k=15

0
0.2

0.4
0.6

0.8
1

0

0.5

1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

y x

Helmholtz equation with k=20

0
0.2

0.4
0.6

0.8
1

0

0.5

1

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

y x

Helmholtz equation with k=25

0
0.2

0.4
0.6

0.8
1

0

0.5

1

-0.015

-0.01

-0.005

0

0.005

0.01

5 NUMERICAL EXPERIMENTS Contents 39

5.3 Examples for TPBVP

In this subsection we will have a look at the mixed two-point boundary value problem:

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x), x ∈ (a, b),

u(a) = 0, u′(b) = 0,

where p(x) ∈ C1(Ī), p(x) ≥ pmin > 0, q(x) ∈ C1(Ī), q(x) ≥ 0, f(x) ∈ L2(I), I =]a, b[.

The basis functions of 1st and 2nd order for the above mixed boundary value problem now become

something like these:

x1 x2 x3 · · ·a b

1

x1 x2 x3 · · ·a = x0 b = xM

1

The overall procedures are similar to what we have discussed in Section 2.2.1 and Section 4.5 for the

1st order and 2nd order respectively. For example, in the quadratic element version, we just need to let

A ← A(2:2M+1,2:2M+1).

We will consider two test cases both of which set p(x) = 1, q(x) = 0, [a, b] = [0, 3].

Test case 1:

f =
π2

4
sin(

π

2
x), with u = sin(

π

2
x).

Test case 2:

f = π2 sin(πx), with u = sin(πx) + πx.

The approximations are given in Figure 26 and the graphs concerning the convergence rates of 1st

order and 2nd order for Test case 1 are represented in Figure 27.

We can conclude from Figure 27 that the convergence rates for linear finite elements are

L∞ norm : O(h2), L2 norm : O(h2), H1 norm : O(h),

and for quadratic finite elements are

L∞ norm : O(h3), L2 norm : O(h3), H1 norm : O(h2).

These results agree with the theory, that is for p-th order finite elements:

L∞ norm : O(hp+1), L2 norm : O(hp+1), H1 norm : O(hp).

5 NUMERICAL EXPERIMENTS Contents 40

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5
exact
N=3
N=5
N=10

(a) Test case 1 by LFEM

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5
exact
N=3
N=5
N=10

(b) Test case 1 by QFEM

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10
exact
N=3
N=5
N=10

(c) Test case 2 by LFEM

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10
exact
N=3
N=5
N=10

(d) Test case 2 by QFEM

Figure 26: Approximations via Linear FEM & Quadratic FEM

-6 -5 -4 -3 -2 -1 0
log(h)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g
(e

rr
)

Linear FE
Quadratic FE
2*log(h)
3*log(h)

(a) Convergence in L∞ norm

-6 -5 -4 -3 -2 -1 0
log(h)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g
(e

rr
)

Linear FE
Quadratic FE
2*log(h)
3*log(h)

(b) Convergence in L2 norm

-6 -5 -4 -3 -2 -1 0
log(h)

-14

-12

-10

-8

-6

-4

-2

0

lo
g
(e

rr
)

Linear FE
Quadratic FE
log(h)
2*log(h)

(c) Convergence in H1 norm

Figure 27: Convergence rates for Test case 1

6 A WEAK GALERKIN FEM Contents 41

6 Further Reading—A Weak Galerkin FEM

In the end, as a further reading, we introduce a more advanced technique—the weak Galerkin method.

It was first introduced and analyzed by Junping Wang and Xiu Ye in their paper [WY13] for solving

second-order elliptic problems. The weak Galerkin is an original finite element method based on

variational principles for weak (generalized) functions and the weak gradients defined thereon.

To illustrate the main ideas of weak Galerkin, the model problem we will consider here is the Dirichlet

problem for 2nd-order elliptic equations

−∇ · (A∇u) = f, in Ω, (88)

u = g, on ∂Ω, (89)

where Ω is an open bounded domain in Rd (polygonal for d = 2, polyhedral for d = 3) and A is a

symmetric uniformly positive definite d× d matrix-valued function.

6.1 Weak Gradients and Discrete Weak Gradients

As the weak Galerkin draws its strength from introducing the weak gradient operator, we shall first

elaborate on the definitions.

Let T be any polytopal domain with boundary ∂T . A weak function on the region T refers to a

function v = {v0, vb} satisfying v0 ∈ L2(T) and vb ∈ L2(∂T). One can interpret the 1st component v0

as the value of v ∈ T , and the 2nd component vb as the value of v on ∂T . We point out that vb may

not necessarily be associated with the trace of v0 on ∂T . We denote the space of weak functions on T

by W (T), that is,

W (T) = {v = {v0, vb} : v0 ∈ L2(T), vb ∈ L2(∂T)}.

For ease of writing, we use the notations (v, w)D =̂
∫
D
vw dx with D ∈ Rd and 〈v, w〉γ =̂

∫
γ
vw ds with

γ ∈ Rd−1.

Definition 6.1. ∀v ∈ W (T), we define the weak gradient of v as a linear functional ∇wv in the dual

space of H1(T) whose action on each q ∈ [H1(T)]d is given by

〈∇wv, q〉T := −(v0,∇ · q)T + 〈vb, q · n〉∂T . (90)

Here, n is the outward normal direction to ∂T .

Note that for any v ∈ W (T), the right-hand side of (90) defines a bounded linear functional on

the normed linear space H1(T). Therefore, the weak gradient ∇wv is well defined. In addition, if the

component of v are restrictions of a function u ∈ H1(T) in T and on ∂T , respectively, then we arrive at

−(v0,∇ · q)T + 〈vb, q · n〉∂T = −(u,∇ · q)T + 〈u, q · n〉∂T = −(∇u · q, 1)T ,

which suggests ∇wv = ∇u, i.e. the strong gradient of u.

In another view, we can the embed Sobolev space H1(T) into the space W (T) through an inclusion

map: H1(T) 7→W (T) which is defined by

iw(φ) = {φ|T , φ|∂T }, φ ∈ H1(T).

Aided by the inclusion map iw, one can view the Sobolev space H1(T) as a subspace of W (T) via

distinguishing each φ ∈ H1(T) with iw(φ). Similarly, a weak function v = {v0, vb} ∈W (T) is said to be

in H1(T) if it can be recognized by a function φ ∈ H1(T) through iw(φ). This, again, suggests that the

weak gradient amounts to the classical gradient (that is, ∇wv = ∇u) for smooth functions v ∈ H1(T).

The discrete weak gradient operator is introduced in the sense such that ∇w is approximated in

a polynomial subspace of the dual [H1(T)]d. We will adopt the notation [Pr(T)]d to mean the set of

polynomials on T with degree ≤ r.

Definition 6.2. The discrete weak gradient operator, denoted by ∇w,r,T , is defined as the unique

polynomial (∇w,r,T v) ∈ [Pr(T)]d that meets

(∇w,r,T v, q)T := −(v0,∇ · q) + 〈vb, q · n〉∂T , q ∈ [Pr(T)]d. (91)

6 A WEAK GALERKIN FEM Contents 42

Using integration by parts to the first term on the right-hand side of (91), one can rephrase (91) in

the following form

(∇w,r,T v, q) = (∇v0, q)T + 〈vb − v0, q · n〉∂T , q ∈ [Pr(T)]d. (92)

Remark 2. We point out that in the design of numerical methods for partial differential equations, the

classical gradient operator ∇ = (∂x1 , ∂x2) should be employed to functions with some certain degree

of smoothness. For instance, in the standard Galerkin FEM, continuous piecewise polynomials over

a prescribed finite element partition is often implied on such a “smoothness”. By introducing the

weak gradient operator, derivatives can be taken for functions without any continuity across cells on a

mesh (amazing). In this way, the notion of weak gradient permits the use of generalized functions in

approximation.

6.2 Weak Galerkin Finite Element Schemes

Denote by Th a partition of the domain Ω comprising polygons in 2D or polyhedrons in 3D qualified

with a set of rules as specified in [WY14]. We denote the set of all edges or flat faces in Th by Eh. The

set of all interior edges or faces is represented by E0
h = Eh \ ∂Ω. ∀T ∈ Th, its diameter is denoted by hT ,

and the mesh size is denoted by h = maxT∈Th hT for Th. We assume the mesh is quasi-uniform, that is

to say there exists a constant satisfying h ≤ ChT , ∀T ∈ Th.

For a given integer k ≥ 1, denote by Vh the weak Galerkin finite element space concerning Th defined

by

Vh = {v = {v0,vb} : v0|T ∈ Pk(T), vb|e ∈ Pk−1(e), e ⊂ ∂T, T ∈ Th} (93)

and

V 0
h = {v : v ∈ Vh, vb = 0 on ∂Ω}. (94)

It should be emphasized that for any function v ∈ Vh there exists a single value vb on each edge e ∈ Eh.

For every element T ∈ Th, we denote the L2 projection from L2(T) to Pk(T) by Q0 and denote the L2

projection from L2(e) to Pk−1(e) by Qb. Denote by Qh the L2 projection from [L2(T)]d to the discrete

gradient space [Pk−1(T)]d. Let V = H1(Ω). A projection operator is defined by Qh : V 7→ Vh satisfying

Qhv = {Q0v0, Qbvb}, {v0, vb} = iw(v) ∈W (T), T ∈ Th (95)

We denote the discrete weak gradient operator on the finite element space Vh by ∇w, k − 1, then we can

compute it by using (91) on each element T , that is

(∇w,k−1v)|T = ∇w,k−1,T (v|T), v ∈ Vh.

We will drop the subscript k − 1 in ∇w,k−1 for the discrete weak gradient from now on for the sake of

simplicity.

Consider two forms on Vh:

a(v, w) =
∑
T∈Th

(a∇wv,∇ww)T ,

s(v, w) = ρ
∑
T∈Th

h−1
T 〈Qbv0 − vb, Qbw0 − wb〉∂T ,

where ρ > 0. We will take ρ = 1 throughout this section for the sake of simplicity. We denote a

stabilization as(·, ·) of a(·, ·) with

as(v, w) = a(v, w) + s(v, w).

Weak Galerkin Algorithm 1. We are assigned to find uh = {u0, ub} ∈ Vh such that ub = Qbg on

∂Ω and satisfying:

as(uh, v) = (f, v0), ∀v = {v0, vb} ∈ V 0
h . (96)

To justify the well-posedness of the scheme (96), we let

|||v||| :=
√
as(v, v) ∀v ∈ Vh. (97)

6 A WEAK GALERKIN FEM Contents 43

A semi-norm in Vh is defined by the functional |||·|||. Moreover, a norm in V 0
h is also defined. To confirm

this, all we need to do is check the positivity property for |||·|||. In the end, we suppose v ∈ V 0
h and

|||v||| = 0. It follows that

(a∇wv,∇wv) +
∑
T∈Th

h−1
T 〈Qbv0 − vb, Qbv0 − vb〉∂T = 0,

which suggests that ∇wv = 0 for every element T and Qbv0 = vb on ∂T . Then by ∇wv = 0 and (92) we

have ∀q ∈ [Pk−1(T)]d

0 = (∇wv, q)T
= (∇v0, q)T − 〈v0 − vb, q · n〉∂T
= (∇v0, q)T − 〈Qbv0 − vb, q · n〉∂T
= (∇v0, q)T .

By letting q = ∇v0 in the above equation gives ∇v0 = 0 on T ∈ Th. Therefore, v0 = const ∀T ∈ Th.

This, alone with the fact that Qbv0 = vb on ∂T and vb = 0 on ∂Ω, suggests v0 = vb = 0.

Lemma 6.1. The weak Galerkin finite element scheme (96) has one and only one solution.

Proof. Obviously, we just need to shown the uniqueness. Let u
(1)
h and u

(2)
h be two solutions of (96), it

follows that eh = u
(1)
h − u

(2)
h satisfies

as(eh, v) = 0, ∀v ∈ V 0
h .

Note that eh ∈ V 0
h , then substituting v with eh in the above equation gives

|||eh|||2 = as(eh, eh) = 0.

This suggests eh ≡ 0, or equivalently, u
(1)
h ≡ u

(1)
h . This yields the assertion of the lemma. �

6.3 Error Analysis for Weak Galerkin

The overall error analysis for the weak Galerkin is rather complicated, so we will simply give some

conclusions. For more information about the proofs, one can refer to [WY15, Section 5, 6].

Error Equation

Let uh = {uo, ub} ∈ Vh be the weak Galerkin finite element solution arising from the numerical scheme

(96). Assume u the exact solution of (88, 89). The L2 projection of u in the finite element space Vh is

given by

Qhu = {Q0u,Qbu}.

Let

eh = {e0, eb} = {Q0u− u0, Qbu− ub}

be the error between the WG finite element solution and the L2 projection of the exact solution.

Lemma 6.2. Let eh be the error of the weak Galerkin finite element solution arising from (96). Then

we have

as(eh, v) = `u(v) + s(Qhu, v), ∀v ∈ V 0
h , (98)

where `u(v) =
∑
T∈Th〈a(∇u−Qh∇u) · n, v0 − vb〉∂T .

6 A WEAK GALERKIN FEM Contents 44

Error Estimates

Theorem 6.3. Let uh ∈ Vh be the weak Galerkin finite element solution of the model problem (88, 89)

arising from (96). Assume the exact solution u ∈ Hk+1(Ω). Then, there exists a constant C such that

|||uh −Qhu||| ≤ ChK‖u‖k+1. (99)

Corollary 6.4. Let uh ∈ Vh be the weak Galerkin finite element solution of the model problem (88, 89)

arising from (96). Assume the exact solution u ∈ Hk+1(Ω). Then, there exists a constant C such that

‖u− uh‖1,h ≤ Chk‖u‖k+1. (100)

Consider the dual problem {
Find Φ ∈ H0

1 (Ω) such that

−∇ · (a∇Φ) = e0 in Ω.
(101)

The usual H2-regularity is assumed, which means there exists a Constant C such that

‖Φ‖2 ≤ C‖e0‖. (102)

Theorem 6.5. Let uh ∈ Vh be the weak Galerkin finite element solution of problem (88, 89) arising

from (96). Assume the exact solution u ∈ Hk+1(Ω). Moreover, assume the dual problem (101) has the

usual H2-regularity. Then, there exists a constant C such that

‖u− u0‖ ≤ Chk+1‖u‖k+1. (103)

6.4 Comparison to Standard FEM

In this subsection, we will check out differences of the quality of approximation between the weak

Galerkin finite element method and the standard Galerkin FEM developed in previous sections by a few

numerical experiments. For simplicity, the domain is set with Ω =]0, 1[×]0, 1[for all the comparison

examples below, and in the rest of this subsection we will just call these two methods WG and SG. The

MATLAB implementation for all these comparison examples by SG is given in Code listing 10.

For the weak Galerkin, the error is defined by eh = uh − Qhu = {e0, eb}, where e0 = u0 − Q0u and

eb = ub−Qbu. Here Qhu = {Q0u,Qbu} with Qh as the L2 projection onto approximately defined spaces.

Comparison Example 1

The first comparison example is set with

A =

[
x2 + y2 + 1 xy

xy x2 + y2 + 1

]
, with u = sin(πx) cos(πy).

To match the equations, the Dirichlet boundary function g and source function f are thus set to be

f =− π[3x cos(πx) cos(πy)− 2πxy cos(πx) sin(πy)−
2π(x2 + y2 + 1) sin(πx) cos(πy)− 3y sin(πx) sin(πy)],

and

g =


0, x = 0 or 1, 0 ≤ y ≤ 1,

sin(πx) y = 0, 0 ≤ x ≤ 1,

−sin(πx) y = 1, 0 ≤ x ≤ 1,

. (104)

The corresponding numerical results by WG and SG are shown in Table 3 and Table 4, respectively.

6 A WEAK GALERKIN FEM Contents 45

Table 3: Comparison example 1 by WG

h |||eh||| Order ‖e0‖ Order

1/4 1.3240e+00 1.5784e+00

1/8 6.6333e-01 9.9710e-01 3.6890e-01 2.0972

1/16 3.3182e-01 9.9933e-01 9.0622e-02 2.0253

1/32 1.6593e-01 9.9983e-01 2.2556e-02 2.0064

1/64 8.2966e-02 9.9998e-01 5.6326e-03 2.0016

1/128 4.1483e-02 1.0000 1.4078e-03 2.0004

Table 4: Comparison example 1 by standard FEM

hM := n−1 ‖eu‖∞ order ‖eu‖L2(Ω) order |eu|H1(Ω) order ‖eu‖H1(Ω) order

1/4 0.0293 0.0644 0.8442 0.8466

1/8 0.0081 1.8620 0.0176 1.8739 0.4325 0.9648 0.4329 0.9678

1/16 0.0021 1.9284 0.0045 1.9657 0.2176 0.9908 0.2177 0.9917

1/32 0.0005 1.9868 0.0011 1.9912 0.1090 0.9977 0.1090 0.9979

1/64 0.0001 1.9978 0.0003 1.9978 0.0545 0.9994 0.0545 0.9995

1/128 0.0000 1.9989 0.0001 1.9994 0.0273 0.9999 0.0273 0.9999

O(hr), r = 1.9599 1.9713 0.9921 0.9928

Comparison Example 2

The Poisson problem is considered in our second example:

−∆u = f

for the PDE model as in (88). Still, we use the exact solution u = sin(πx) cos(πy) as the first example

did. Hence the source function f becomes

f = 2π2 sin(πx) cos(πy)

and boundary function g is given by (104) as before.

The results for Comp Ex 2 by WG and SG are shown in Table 5 and Table 6, respectively.

The next two comparison examples are taken from the paper [Mu+12].

Comparison Example 3

The 3rd comparison example we use here is a degenerated diffusion problem.

Consider

−∇ · (xy∇u) = f, in Ω

u = 0. on ∂Ω

The exact solution is set to be u = x(1− x)y(1− y) given that it vanishes on the boundary.

The interesting thing is the diffusion tensor A = xy is not uniformly positive definite (see the 2nd

footnote on page 2), that is, we can’t find such a positive number ε− > 0 such that

((xy)(z)) · z ≥ ε−‖z‖2 ∀z ∈ R2

holds for almost all (x, y) ∈ Ω =]0, 1[×]0, 1]. Hence, the convergence rates in these norms by which we

have usually measured are not specified. This applies both to WG and SG. So we cannot expect the

orders of the convergent rates.

These numerical results are given in Table 7 and Table 8 for WG and SG, respectively.

6 A WEAK GALERKIN FEM Contents 46

Table 5: Comparison example 2 by WG

h |||eh||| ‖eh‖ ‖eh‖Eh

1/2 2.7935e-01 6.1268e-01 5.7099e-02

1/4 1.4354e-01 1.5876e-01 1.3892e-02

1/8 7.2436e-02 4.0043e-02 3.5430e-03

1/16 3.6315e-02 1.0033e-02 8.9325e-04

1/32 1.8170e-02 2.5095e-03 2.2384e-04

1/64 9.0865e-03 6.2747e-04 5.5994e-05

1/128 4.5435e-03 1.5687e-04 1.4001e-05

1/256 2.2718e-03 3.9219e-05 3.5003e-06

O(hr), r = 9.9388e-01 1.9931 1.9961

Table 6: Comparison example 2 by SG

hM := n−1 ‖eu‖∞ order ‖eu‖L2(Ω) order |eu|H1(Ω) order ‖eu‖H1(Ω) order

1/4 0.0223 0.0636 0.8440 0.8464

1/8 0.0059 1.9235 0.0172 1.8863 0.4325 0.9646 0.4328 0.9676

1/16 0.0015 1.9525 0.0044 1.9699 0.2176 0.9908 0.2177 0.9916

1/32 0.0004 1.9752 0.0011 1.9924 0.1090 0.9977 0.1090 0.9979

1/64 0.0001 1.9988 0.0003 1.9981 0.0545 0.9994 0.0545 0.9995

1/128 0.0000 1.9992 0.0001 1.9995 0.0273 0.9999 0.0273 0.9999

O(hr), r = 1.9714 1.9744 0.9921 0.9928

Table 7: Comparison example 3 by WG

h ‖∇deh‖ ‖e0‖ ‖eb‖ ‖∇duh∇u‖ ‖u0 − u‖ ‖e0‖∞

1/8 5.61e-02 3.32e-03 6.60e-03 5.75e-02 5.48e-03 1.27e-02

1/16 4.03e-02 1.38e-03 2.81e-03 4.09e-02 2.59e-03 4.90e-03

1/32 2.95e-02 5.68e-04 1.16e-03 2.96e-02 1.23e-03 2.21e-03

1/64 2.15e-02 2.35e-04 4.83e-04 2.15e-02 5.97e-04 1.16e-03

1/128 1.55e-02 9.93e-05 2.02e-04 1.55e-02 2.91e-04 5.99e-04

O(hr), r = 0.4614 1.2687 1.2594 0.4697 1.0579 1.0912

Table 8: Comparison example 3 by SG

hM := n−1 ‖eu‖∞ order ‖eu‖L2(Ω) order |eu|H1(Ω) order ‖eu‖H1(Ω) order

1/4 0.0043 0.0056 0.0590 0.0593

1/8 0.0019 1.1499 0.0015 1.8432 0.0304 0.9557 0.0305 0.9602

1/16 0.0008 1.3176 0.0004 1.8922 0.0153 0.9909 0.0153 0.9922

1/32 0.0003 1.5415 0.0001 1.9172 0.0076 1.0011 0.0076 1.0015

1/64 0.0001 1.6451 0.0000 1.9340 0.0038 1.0028 0.0038 1.0029

1/128 0.0000 1.6871 0.0000 1.9460 0.0019 1.0022 0.0019 1.0022

O(hr), r = 1.4789 1.9089 0.9928 0.9939

6 A WEAK GALERKIN FEM Contents 47

101 102

n [log]

10-6

10-4

10-2

100

er
ro

r
[l

og
]

maximum norm

L2 norm
rate 2

H1 norm
rate 1

Figure 28: Comparison example 3 by SG

Comparison Example 4

The last (4th) comparison example is an anisotropic problem.

Consider

−∇ · (A∇u) = f,

with the diffusion tensor

A =

[
k2 0

0 1

]
for k 6= 0.

We set the analytic solution u = sin(2πx) sin(2kπy). Thus the source function

f = 8k2π2 sin(2πx) sin(2kπy)

and Dirichlet boundary function

g = 0 on ∂Ω.

We will test two cases with k = 3 and k = 9 by WG and SG.

For k = 3, Table 9 and Table 10 represent the numerical results for WG and SG, respectively.

For k = 9, these results are shown in Table 11 and Table 12 for WG and SG, respectively.

From these results in Comp Ex 4 we can see that the SG attains its expected convergent orders

(optimal convergence rates) in a rather slow pace compared to the WG.

6 A WEAK GALERKIN FEM Contents 48

Table 9: Comparison example 4 with k = 3 by WG

h ‖∇deh‖ ‖e0‖ ‖eb‖ ‖∇duh∇u‖ ‖u0 − u‖ ‖e0‖∞

1/8 1.48e+00 1.95e-02 4.61e-02 2.70e+00 1.29e-01 4.13e-02

1/16 7.39e-01 5.11e-03 1.16e-02 1.35e+00 6.53e-02 1.06e-02

1/32 3.69e-01 1.29e-03 2.92e-03 6.80e-01 3.27e-02 2.67e-03

1/64 1.84e-01 3.24e-04 7.33e-04 3.40e-01 1.63e-02 6.68e-04

1/128 9.23e-02 8.12e-05 1.83e-04 1.70e-01 8.18e-03 1.66e-04

O(hr), r = 0.0010 1.9793 1.9942 0.9972 0.9975 1.9906

Table 10: Comparison example 4 with k = 3 by SG

hM := n−1 ‖eu‖∞ order ‖eu‖L2(Ω) order |eu|H1(Ω) order ‖eu‖H1(Ω) order

1/4 0.6727 0.4879 9.7186 9.7308

1/8 0.2425 1.4719 0.2875 0.7629 6.8684 0.5008 6.8745 0.5013

1/16 0.0648 1.9050 0.0946 1.6046 3.7577 0.8701 3.7589 0.8709

1/32 0.0180 1.8447 0.0254 1.8967 1.9204 0.9684 1.9206 0.9688

1/64 0.0045 1.9951 0.0065 1.9739 0.9654 0.9922 0.9654 0.9923

1/128 0.0011 1.9988 0.0016 1.9935 0.4834 0.9981 0.4834 0.9981

O(hr), r = 1.8616 1.6994 0.8888 0.8892

101 102

n [log]

10-3

10-2

10-1

100

101

102

er
ro

r
[l

og
]

maximum norm

L2 norm
rate 2

H1 norm
rate 1

Figure 29: Comp Ex 4 with k = 3 by SG

101 102

n [log]

10-3

10-2

10-1

100

101

102

er
ro

r
[l

og
]

maximum norm

L2 norm
rate 2

H1 norm
rate 1

Figure 30: Comp Ex 4 with k = 9 by SG

6 A WEAK GALERKIN FEM Contents 49

Table 11: Comparison example 4 with k = 9 by WG

h ‖∇deh‖ ‖e0‖ ‖eb‖ ‖∇duh∇u‖ ‖u0 − u‖ ‖e0‖∞

1/4 7.98e+00 6.80e-02 2.93e-01 1.58e+01 2.52e-01 1.49e-01

1/8 3.89e+00 2.07e-02 7.44e-02 8.18e+00 1.30e-01 4.22e-02

1/16 1.91e+00 5.43e-03 1.88e-02 4.12e+00 6.53e-02 1.09e-02

1/32 9.54e-01 1.37e-03 4.72e-03 2.06e+00 3.27e-02 2.74e-03

1/64 4.76e-01 3.44e-04 1.18e-03 1.03e+00 1.63e-02 6.84e-04

O(hr), r = 1.0161 1.9160 1.9897 0.9857 0.9883 1.9492

Table 12: Comparison example 4 with k = 9 by SG

hM := n−1 ‖eu‖∞ order ‖eu‖L2(Ω) order |eu|H1(Ω) order ‖eu‖H1(Ω) order

1/4 1.5663 0.4770 28.1833 28.1873

1/8 0.7947 0.9788 0.4986 -0.0638 28.2982 -0.0059 28.3026 -0.0059

1/16 0.4728 0.7492 0.4292 0.2163 25.0052 0.1785 25.0089 0.1785

1/32 0.1341 1.8185 0.1738 1.3042 14.3673 0.7994 14.3683 0.7995

1/64 0.0339 1.9850 0.0489 1.8285 7.3446 0.9680 7.3448 0.9681

1/128 0.0085 1.9975 0.0126 1.9577 3.6889 0.9935 3.6890 0.9935

O(hr), r = 1.5177 1.0733 0.6087 0.6088

7 CONCLUSION Contents 50

7 Conclusion

In our thesis, we first derived the weak formulations of homogeneous Dirichlet two-point boundary value

problems and in parallel we obtained the counterpart of 2nd-order elliptic BVPs. Then we managed

to use the Galerkin discretization scheme to form our linear system of equations. Thus the problem

turned into how to compute the element matrices (vectors) and assemble the final Galerkin matrix (RHS

vector). We could do it in either vertex-centered or cell-oriented way. Vertex-centered assembly seemed

to be direct to obtain the Galerkin matrix, but to find all the adjacent triangles to the vertex or edge

requires a bit more effort or some complex data structures for storing the mesh information. Thus it

was rather cumbersome. The cell-oriented assembly only need to distribute the cell contributions to the

correct DOFs, hence we just need an index mapper. Assembly’s done by looping over each cells and

distributing the local contributions to the global DOFs. Cool! We also learned that why “assembly”

became important even in 1D for TPBVP. For the linear finite elements it may seem trivial to assemble

the 2-by-2 element stiffness matrix, but for higher order finite elements it really shines. This is because

higher order elements requires many more interpolation points and thus giving rise to a wide area of span

for a single DOF, which to it rather hard to directly compute each entry of the global stiffness matrix.

Hence, rooted by the core idea of assembly and distribution acquired in 2D, we are now able to apply

this idea to handle higher order finite elements in 1D with ease (The author was ever confused with

why doing such a fuss to use element matrices and assemble them, we could be quick and dirty—just

do it directly. That’s because he had not got it. Considering higher order finite elements contributes

to understanding the idea of assembly). In the end of the first part we performed a few numerical

experiments and observed the optimal convergence rates, which verified the assertion of the theory.

In the second part we studied the definitions of weak gradients and discrete weak gradients. We found

the charming property that them brought us: allowing approximating the solution with discontinuous

piecewise polynomials across cells, thus permitting the use of generalized functions. Without the

requirement of being “smooth”, the weak Galerkin can be applied to a wide area of interests. We

checked out the quality of approximation by WG and SG through a couple of numerical experiments,

and found out that WG really kicks SG’s ass in some cases. After all, it can be deemed as a generalized

Galerkin method.

REFERENCES Contents 51

References

[Tur+56] M. J. Turner et al. “Stiffness and deflection of complex structures.” In: Journal of the

Aeronautical Sciences 23 (1956), pp. 805–824.

[GB05] Thomas Grätsch and Klaus-Jürgen Bathe. “A posteriori error estimation techniques in practical

finite element analysis.” In: Computers and Structures 83 (2005), pp. 235–265. doi: 10.1016/

j.compstruc.2004.08.011.

[Goc06] Mark S. Gockenbach. Understanding and Implementing the Finite Element Method. Society

for Industrial and Applied Mathematics, 2006. Chap. 2.2.1-2.2.2, pp. 21–27. isbn: 0-89871-614-4.

url: https://1lib.us/book/656138/15c86e.

[GR09] C. Geuzaine and J.-F. Remacle. “Gmsh: a three-dimensional finite element mesh generator

with built-in pre- and post-processing facilities.” In: International Journal for Numerical

Methods in Engineering 79 (11 2009), pp. 1309–1331. url: http : / / gmsh . info / doc /

preprints/gmsh_paper_preprint.pdf.

[BF10] Richard L. Burden and J. Douglas Faires. Numerical Analysis. 9th. Cengage Learning, 2010,

p. 746.

[Li10] Ronghua Li. Numerical Methods for Partial Differential Equations. 2th. Higher Education

Press, 2010.

[Mu+12] Lin Mu et al. “A COMPUTATIONAL STUDY OF THE WEAK GALERKINMETHOD

FOR SECOND-ORDER ELLIPTIC EQUATIONS.” In: (2012). url: https://arxiv.org/

abs/1111.0618.

[WY13] Junping Wang and Xiu Ye. “A weak Galerkin finite element method for second-order elliptic

problems.” In: Journal of Computational and Applied Mathematics 241 (2013), pp. 103–115.

doi: 10.1016/j.cam.2012.10.003.

[WY14] Junping Wang and Xiu Ye. “A weak Galerkin mixed finite element method for second-order

elliptic problems.” In: Mathematics of Computation 83.289 (2014), pp. 2101–2126. url:

https://arxiv.org/abs/1202.3655.

[Can+15] C.D. Cantwella et al. “Nektar++: An open-source spectral/hp element framework.” In:

Computer Physics Communications 192 (2015), pp. 205–219. doi: 10.1016/j.cpc.2015.

02.008.

[WY15] Junping Wang and Xiu Ye. “A weak Galerkin finite element method with polynomial reduction.”

In: Journal of Computational and Applied Mathematics 285 (2015), pp. 45–58. doi: 10.1016/

j.cam.2015.02.001.

[Hip21] Ralf Hiptmair. Numerical Methods for Partial Differential Equations. 2021. url: https:

//www.sam.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf.

https://doi.org/10.1016/j.compstruc.2004.08.011
https://doi.org/10.1016/j.compstruc.2004.08.011
https://1lib.us/book/656138/15c86e
http://gmsh.info/doc/preprints/gmsh_paper_preprint.pdf
http://gmsh.info/doc/preprints/gmsh_paper_preprint.pdf
https://arxiv.org/abs/1111.0618
https://arxiv.org/abs/1111.0618
https://doi.org/10.1016/j.cam.2012.10.003
https://arxiv.org/abs/1202.3655
https://doi.org/10.1016/j.cpc.2015.02.008
https://doi.org/10.1016/j.cpc.2015.02.008
https://doi.org/10.1016/j.cam.2015.02.001
https://doi.org/10.1016/j.cam.2015.02.001
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf

APPENDIX Contents 52

Appendix

1 function [p,t]=generateMesh(x,y,n_x,n_y)

2 h_x=(x(2)-x(1))/n_x;

3 h_y=(y(2)-y(1))/n_y;

4 [X,Y] = meshgrid(x(1):h_x:x(2), y(1):h_y:y(2));

5 N=(n_x+1)*(n_y+1);

6 x=reshape(X,N,1);

7 y=reshape(Y,N,1);

8 p=[x,y];

9 t=delaunay(x,y);

10 end

Code listing 1: (Uniform) mesh generation on a rectangular region

1 function S=getArea(triangle)

2 % triangle is a 3x2 matrix

3 S=0.5*((triangle(2,1)-triangle(1,1))* ...

4 (triangle(3,2)-triangle(1,2))- ...

5 (triangle(2,2)-triangle(1,2))* ...

6 (triangle(3,1)-triangle(1,1)));

7 end

Code listing 2: Compute the area of a triangle

1 % −∆u+ ku = f, @para mass_coef = k

2 %
∫
Ω kuv dx is termed as mass matrix

3 function A = assembleMatrix(p, t, mass_coef)

4 if nargin==2

5 mass_coef=0;

6 end

7 N=size(p,1);

8 nCells=size(t,1);

9 ii=zeros(9*nCells,1); % prealloacate memory

10 jj=ii;

11 vv=ii;

12 idx=0;

13 for k=1:nCells

14 E=t(k,:); % triangle element by index

15 Ak=getElementMatrix(p(E,:), mass_coef);

16 for i=1:3

17 for j=1:3

18 idx=idx+1;

19 ii(idx)=E(i); jj(idx)=E(j);

20 vv(idx)=Ak(i,j);

21 end

22 end

23 end

24 A=sparse(ii,jj,vv,N,N);

25 end

26

27 function Ak = getElementMatrix(triangle, mass_coef)

28 Ak=ones(3);

29 Ak(:,2:3)=triangle;

30 Ak=Ak\eye(3); % inv(Ak)

31 Ak=Ak(2:3,:);

32 area=getArea(triangle);

33 Ak=area*(Ak.')*Ak;

34 if mass_coef ~= 0

35 Ak=Ak+mass_coef*area/12*[2 1 1;1 2 1; 1 1 2];

36 end

37 end

Code listing 3: Assembly of the Galerkin matrix (stiffness matrix)

APPENDIX Contents 53

1 % −∇ · (α∇u) + γu = f

2 function A = assembleReactionDiffusionMatrix(p, t, alpha, gamma)

3 N=size(p,1);

4 nCells=size(t,1);

5 ii=zeros(9*nCells,1); % prealloacate memory

6 jj=ii;

7 vv=ii;

8 idx=0;

9 for k=1:nCells

10 vidx=t(k,:); % global vertex indices of k-th cell

11 Ak=getElementMatrix(p,vidx,alpha,gamma);

12 for i=1:3

13 for j=1:3

14 idx=idx+1;

15 ii(idx)=vidx(i); jj(idx)=vidx(j);

16 vv(idx)=Ak(i,j);

17 end

18 end

19 end

20 A=sparse(ii,jj,vv,N,N);

21 end

22

23 function Ak = getElementMatrix(p, vidx, alpha, gamma)

24 % 6-point quadrature rule of order 4 on the unit triangle [0 0;1 0;0 1]

25 w = [1/60; 1/60; 1/60; 9/60; 9/60 ; 9/60];

26 x = [1/2 0; 1/2 1/2; 0 1/2; 1/6 1/6; 1/6 2/3; 2/3 1/6];

27 ref_shape_val = [1-x(:,1)-x(:,2), x(:,1), x(:,2)]; % values on quadrature points

28 grad_ref_shape = [-1 1 0; % gradients of reference shape functions

29 -1 0 1];

30

31 bK = p(vidx(1),:);

32 BK = [p(vidx(2),:)-bK; p(vidx(3),:)-bK];

33 det_BK = abs(det(BK));

34 inv_BK = BK\eye(2); % inv(BK)

35

36 % transform quadrature points

37 y = x*BK+bK;

38

39 gamma_val = gamma(y(:,1),y(:,2));

40 Ak = zeros(3);

41 for i=1:6 % loop over quadrature points

42 alpha_val = alpha(y(i,1),y(i,2)); % a 2-by-2 symmetric matrix or a scalar

43

44 trf_grad = inv_BK*grad_ref_shape; % transformed gradients, 2-by-3

45 Ak_alpha = (alpha_val*trf_grad).'*trf_grad;

46

47 Ak_gamma = gamma_val(i)*(ref_shape_val(i,:).')*ref_shape_val(i,:);

48

49 Ak = Ak+w(i)*(Ak_alpha+Ak_gamma)*det_BK;

50 end

51 end

Code listing 4: Assembly of diffusion and reaction matrix

1 function phi = assembleVector(p,t,f)

2 nCells=size(t,1);

3 phi=zeros(size(p,1),1);

4 for k=1:nCells

5 E=t(k,:); % element by index

6 phi(E)=phi(E)+getElementVector(p(E,:),f);

7 end

8 end

9

10 function phi_loc = getElementVector(triangle,f)

APPENDIX Contents 54

11 phi_loc=f(triangle(:,1),triangle(:,2));

12 phi_loc=getArea(triangle)/3*phi_loc;

13 end

Code listing 5: Assembly of the right-hand side vector (load vector)

1 function phi = assembleVectorByGaussQuad(p, t, f)

2 nCells = size(t,1);

3 phi = zeros(size(p,1),1);

4 for k = 1:nCells

5 vidx = t(k,:); % global vertex indices of k-th cell

6 phi(vidx) = phi(vidx)+getElementVector(p,vidx,f);

7 end

8 end

9

10 function phi_loc = getElementVector(p, vidx, f)

11 % 6-point quadrature rule of order 4 on the unit triangle [0 0;1 0;0 1]

12 w = [1/60; 1/60; 1/60; 9/60; 9/60 ; 9/60];

13 x = [1/2 0; 1/2 1/2; 0 1/2; 1/6 1/6; 1/6 2/3; 2/3 1/6];

14 ref_shape_val = [1-x(:,1)-x(:,2), x(:,1), x(:,2)]; % values on quadrature points

15

16 bK = p(vidx(1),:);

17 BK = [p(vidx(2),:)-bK; p(vidx(3),:)-bK];

18 det_BK = abs(det(BK));

19

20 % transform quadrature points

21 y = x*BK+bK;

22

23 f_val = f(y(:,1),y(:,2));

24 phi_loc = sum(w.*f_val.*ref_shape_val)*det_BK;

25 phi_loc = phi_loc.';

26 end

Code listing 6: Assembly of the RHS vector by Gaussian quadrature

1 function [L_inf_err,L2_err,H1_semi_err,H1_err] = errorEstimates(p,t,u,u_r,grad_u_r)

2

3 % 6-point quadrature rule of order 4 on the unit triangle [0 0;1 0;0 1]

4 w = [1/60; 1/60; 1/60; 9/60; 9/60 ; 9/60];

5 x = [1/2 0; 1/2 1/2; 0 1/2; 1/6 1/6; 1/6 2/3; 2/3 1/6];

6

7 nCells = size(t,1);

8 ref_shape_val = [1-x(:,1)-x(:,2), x(:,1), x(:,2)]; % values on quadrature points

9 grad_ref_shape = [-1 -1;1 0;0 1]; % gradients of reference shape functions

10

11 L_inf_err = max(abs(u_r(p(:,1),p(:,2))-u));

12 L2_err = 0; H1_semi_err = 0; H1_err = 0;

13 for k = 1 : nCells

14 % We can also use `GaussTriaQuad()` to calculate the local L2 error:

15 % update u_err = @(x,y) (u_r(x,y)-u_K(x,y)).^2 for each loop, where

16 % u_K = @(x,y) "plane over triangle K with hights u(vidx)"

17 % then

18 % loc_L2_err = GaussTriaQuad(triangle, u_err);

19

20 vidx = t(k,:); % global vertex indices of k-th cell

21

22 bK = p(vidx(1),:);

23 BK = [p(vidx(2),:)-bK; p(vidx(3),:)-bK];

24 det_BK = abs(det(BK));

25

26 % transform quadrature points

27 y = x*BK+bK;

28

29 u_EX = u_r(y(:,1),y(:,2));

APPENDIX Contents 55

30 grad_u_EX = grad_u_r(y(:,1),y(:,2));

31

32 u_FE = u(vidx(1))*ref_shape_val(:,1)+u(vidx(2))*ref_shape_val(:,2)+ ...

33 u(vidx(3))*ref_shape_val(:,3);

34

35 grad_u_FE = (u(vidx(1))*grad_ref_shape(1,:)+ ...

36 u(vidx(2))*grad_ref_shape(2,:)+ ...

37 u(vidx(3))*grad_ref_shape(3,:))*(inv(BK)).';

38

39 tmp = sum(w.*(u_EX-u_FE).^2)*det_BK;

40 L2_err = L2_err+tmp;

41

42 tmp2 = sum(w.*sum((grad_u_EX-grad_u_FE).^2,2))*det_BK;

43 H1_semi_err = H1_semi_err+tmp2;

44 H1_err = H1_err+tmp+tmp2;

45

46 end

47

48 L2_err = sqrt(L2_err);

49 H1_semi_err = sqrt(H1_semi_err);

50 H1_err = sqrt(H1_err); % = sqrt(L2_err^2+H1_semi_err^2)

51

52 end

Code listing 7: Error estimator

1 % u = cos(πx) cos(πy)

2 % −∆u = 2π2cos(πx) cos(πy), in Ω

3 % ∇u · n = π sin(πx) cos(πy), on Γ

4 % u = cos(πx) cos(πy), on ∂Ω \ Γ

5 % where Ω = {(x, y) | − 1
2
< x < 1, −1 < y < 1},

6 % Γ = {(x, y) | x = − 1
2
, −1 ≤ y ≤ 1}

7

8 N=6;

9 L_inf_err=zeros(N,1);

10 L2_err=zeros(N,1);

11 H1_semi_err=zeros(N,1);

12 H1_err=zeros(N,1);

13 dofs=zeros(N,1);

14 n=4;

15 for i=1:N

16 [dofs(i),L_inf_err(i),L2_err(i),H1_semi_err(i),H1_err(i)]=run_example1(n);

17 n=n*2;

18 end

19 L_inf_order=zeros(N-1,1);

20 L2_order=zeros(N-1,1);

21 H1_semi_order=zeros(N-1,1);

22 H1_order=zeros(N-1,1);

23 for i=1:N-1

24 L_inf_order(i)=log2(L_inf_err(i)/L_inf_err(i+1));

25 L2_order(i)=log2(L2_err(i)/L2_err(i+1));

26 H1_semi_order(i)=log2(H1_semi_err(i)/H1_semi_err(i+1));

27 H1_order(i)=log2(H1_err(i)/H1_err(i+1));

28 end

29 dofs

30 disp('L_inf_err L2_err H1_semi_err H1_err')

31 disp([L_inf_err,L2_err,H1_semi_err,H1_err])

32 disp('L_inf_order L2_order H1_semi_order H1_order')

33 disp([L_inf_order,L2_order,H1_semi_order,H1_order])

34

35 % plot

36 figure(3)

37 % L2/L∞ norm: ||u− uh||∗ = O(M−2) = O(h2
M) = O(N−1)

38 % H1 semi-norm: |u− uh|H1(Ω) = O(M−1) = O(hM) = O(N−
1
2)

39 loglog(dofs,L_inf_err,'-^', ...

APPENDIX Contents 56

40 dofs,L2_err,'-d', ...

41 dofs,exp(-1*log(dofs)+0.8),'--', ...

42 dofs,H1_semi_err,'-p', ... dofs,H1_err,'-h', ...

43 dofs,exp(-1/2*log(dofs)+1.9),'--');

44 xlabel('dofs [log]'); xlim([10 3*10^4]);

45 ylabel('error [log]');

46 legend('maximum norm','L^2 norm','rate 2','H^1 semi-norm', ... 'H^1 norm',

47 'rate 1','Location','SouthWest');

48 % title('Convergence Rates');

49 % Since L^2 norm errors are rather small when compared to H^1 semi-norm,

50 % H^1 semi-norm errors are almost equal to H^1 semi norm, so in the plot

51 % H^1 semi-norm and H^1 norm almost coincide if we draw them together.

52

53 %===

54

55 function [dofs,L_inf_err,L2_err,H1_semi_err,H1_err] = run_example1(n)

56 x=[-1/2 1]; y=[-1 1];

57 % n_x=50; n_y=50;

58 n_x=n; n_y=n;

59

60 [p,t] = generateMesh(x,y,n_x,n_y);

61 dofs = size(p,1);

62

63 % alpha = @(x,y) 1; % alpha = @(x,y) 1*[1 0;0 1];

64 % gamma = @(x,y) x.*0+y.*0;

65 A = assembleMatrix(p,t); % A = assembleReactionDiffusionMatrix(p,t,alpha,gamma);

66 f = @(x,y) 2*pi^2*cos(pi*x).*cos(pi*y);

67 phi = assembleVector(p,t,f); % phi = assembleVectorByGaussQuad(p,t,f);

68

69 % process boundary conditions

70 nb_func = @(y) -pi*cos(pi*y);

71 phi = processNeumannBoundary(phi,p,nb_func);

72 db_func = @(x,y) cos(pi*x).*cos(pi*y);

73 [A,phi] = processDirichletBoundary(A,phi,p,db_func);

74

75 % solve the linear system of equations

76 u = A\phi;

77

78 u_r = @(x, y) cos(pi*x).*cos(pi*y);

79 grad_u_r = @(x, y) [-pi*sin(pi*x).*cos(pi*y),-pi*cos(pi*x).*sin(pi*y)];

80 [L_inf_err,L2_err,H1_semi_err,H1_err] = errorEstimates(p,t,u,u_r,grad_u_r);

81

82 % t is specified as a 4-by-Nt matrix in pdemesh, although we don't

83 % use the 4th row in a 2D mesh. To be compatible with 3D meshes?

84 t=[t';zeros(1,size(t,1))];

85 p=p'; % required to be 2-by-nP

86

87 figure(1)

88 pdemesh(p,0123,t,u) % 2nd arg `e` is unused, but has to be a matrix

89 title('LFEM solution')

90

91 figure(2)

92 pdemesh(p,0123,t,u_r(p(1,:),p(2,:)))

93 title('exact solution')

94

95 end

96

97 function phi = processNeumannBoundary(phi,p,nb_func)

98 % g = ∇u · n = π sin(πx) cos(πy)

99 %
∫
Γ gv ds =

∑
i

∫
Γi
g (v

s(i)
h + v

e(i)
h) ds

100

101 pos = find(p(:,1)==-1/2);

102 edges = [pos(1:end-1),pos(2:end)];

103 nE = size(edges,1);

104 for i = 1:nE

105 idx_s = edges(i,1); idx_e = edges(i,2);

APPENDIX Contents 57

106 y_s = p(idx_s,2); y_e = p(idx_e,2);

107 diff_y = y_e-y_s;

108 phi(idx_s) = phi(idx_s)+ ...

109 diff_y * Gaussquad(@(t)nb_func(y_s+t*diff_y).*t, 0, 1);

110 phi(idx_e) = phi(idx_e)+ ...

111 diff_y * Gaussquad(@(t)nb_func(y_s+t*diff_y).*(1-t), 0, 1);

112 end

113 end

114

115 function [A,phi] = processDirichletBoundary(A,phi,p,db_func)

116 db_pos = find(p(:,1)==1|p(:,2)==-1|p(:,2)==1);

117 A(db_pos,:) = 0;

118 A(db_pos,db_pos) = eye(size(db_pos,1));

119 phi(db_pos) = db_func(p(db_pos,1),p(db_pos,2));

120 end

Code listing 8: Example 1

1 % Exercise 2.7.2 in our text, p82

2 % −∆u− k2 u = 1, in (0, 1)× (0, 1),

3 % u = 0, on Γ1 = {x = 0, 0 ≤ y ≤ 1} ∪ {0 ≤ x ≤ 1, y = 1}
4 % ∇u · n = 0, on Γ2 = {0 ≤ x ≤ 1, y = 0} ∪ {x = 1, 0 ≤ y ≤ 1}
5

6 for k = [1,5,10,15,20,25]

7 run_exercise_2_7_2(k)

8 end

9

10 %===

11

12 function run_exercise_2_7_2(k)

13 x=[0 1]; y=[0 1];

14 n_x=50; n_y=50;

15

16 [p,t] = generateMesh(x,y,n_x,n_y);

17

18 A = assembleMatrix(p,t,-k^2);

19 f = @(x,y) 1+x.*0+y.*0;

20 phi = assembleVector(p,t,f);

21

22 % process Dirichlet boundary condition

23 db_func = @(x,y) x.*0+y.*0;

24 [A,phi] = processDirichletBoundary(A,phi,p,db_func);

25

26 % solve the linear systems of equations

27 u = A\phi;

28

29 t=[t';zeros(1,size(t,1))];

30 p=p'; % required to be 2-by-nP

31

32 figure

33 pdemesh(p,0123,t,u) % 2nd arg `e` is unused, but has to be a matrix

34 title(['Helmholtz equation with k=',num2str(k)])

35 xlabel('x')

36 ylabel('y')

37 fig2svg(['../svg/Helmholtz_k=',num2str(k),'.svg']);

38

39 end

40

41 function [A,phi] = processDirichletBoundary(A,phi,p,db_func)

42 db_pos = find(p(:,1)==0|p(:,2)==1);

43 A(db_pos,:) = 0;

44 A(db_pos,db_pos) = eye(size(db_pos,1));

45 phi(db_pos) = db_func(p(db_pos,1),p(db_pos,2));

46 end

APPENDIX Contents 58

Code listing 9: Exercise 2.7.2 in our text [Li10]

1 % FEM for Elliptic BVP

2 % −∇ · (α∇u) + γu = f, in Ω,

3 % u = gd, on ∂Ω,

4 % where Ω = (0, 1)× (0, 1).

5

6 u_case = 1; % <--- choose which one to run

7 N=6;

8 n=4; % h(M) := n−1

9 n_arr = 2.^(2:N+1).';

10 L_inf_err=zeros(N,1);

11 L2_err=zeros(N,1);

12 H1_semi_err=zeros(N,1);

13 H1_err=zeros(N,1);

14 for i=1:N

15 [~,L_inf_err(i),L2_err(i),H1_semi_err(i),H1_err(i)]=run_ellbvp(n,u_case);

16 n=n*2;

17 end

18 L_inf_order=zeros(N-1,1);

19 L2_order=zeros(N-1,1);

20 H1_semi_order=zeros(N-1,1);

21 H1_order=zeros(N-1,1);

22 for i=1:N-1

23 L_inf_order(i)=log2(L_inf_err(i)/L_inf_err(i+1));

24 L2_order(i)=log2(L2_err(i)/L2_err(i+1));

25 H1_semi_order(i)=log2(H1_semi_err(i)/H1_semi_err(i+1));

26 H1_order(i)=log2(H1_err(i)/H1_err(i+1));

27 end

28 p_L_inf = polyfit(log2(n_arr),log2(L_inf_err),1);

29 p_L2 = polyfit(log2(n_arr),log2(L2_err),1);

30 p_H1_semi = polyfit(log2(n_arr),log2(H1_semi_err),1);

31 p_H1 = polyfit(log2(n_arr),log2(H1_err),1);

32 n_arr

33 disp('L_inf_err L2_err H1_semi_err H1_err')

34 disp([L_inf_err,L2_err,H1_semi_err,H1_err])

35 disp('L_inf_order L2_order H1_semi_order H1_order')

36 disp([L_inf_order,L2_order,H1_semi_order,H1_order])

37 disp('Orders by least square approximation')

38 disp(-[p_L_inf(1),p_L2(1),p_H1_semi(1),p_H1(1)])

39

40 % plot

41 figure(3)

42 b = [1.9,0.8; -0.7,-1.7; 5.5,4.3];

43 % L2/L∞ norm: ||u− uh||∗ = O(h2
M) = O(n−2)

44 % H1 semi-norm: |u− uh|H1(Ω) = O(hM) = O(n−1)

45 loglog(n_arr,L_inf_err,'-^', ...

46 n_arr,L2_err,'-d', ...

47 n_arr,exp(-2*log(n_arr)+b(u_case,2)),'--', ... % adjust the coef b in exp to

48 n_arr,H1_err,'-p', ... % make the ref line work better

49 n_arr,exp(-1*log(n_arr)+b(u_case,1)),'--');

50 xlabel('n [log]');

51 ylabel('error [log]');

52 legend('maximum norm','L^2 norm','rate 2','H^1 norm', ...

53 'rate 1','Location','SouthWest');

54 % title('Convergence Rates');

55

56 %===

57

58 function [dofs,L_inf_err,L2_err,H1_semi_err,H1_err] = run_ellbvp(n, u_case)

59 x=[0 1]; y=[0 1];

60 % n_x=50; n_y=50;

61 n_x=n; n_y=n;

62

63 [p,t] = generateMesh(x,y,n_x,n_y);

64 dofs = size(p,1);

APPENDIX Contents 59

65

66 if u_case == 1

67 u_r = @(x, y) sin(pi*x).*cos(pi*y);

68 grad_u_r = @(x, y) [pi*cos(pi*x).*cos(pi*y), -pi*sin(pi*x).*sin(pi*y)];

69 alpha = @(x,y)[x.^2+y.^2+1,x.*y; x.*y,x.^2+y.^2+1];

70 gamma = @(x,y) 0.*x.*y;

71 f = @(x,y) -pi*(3*x.*cos(pi*x).*cos(pi*y)-2*pi*x.*y.*cos(pi*x).*sin(pi*y)- ...

72 2*pi*(x.^2+y.^2+1).*sin(pi*x).*cos(pi*y)-3*y.*sin(pi*x).*sin(pi*y));

73 % alpha = @(x,y) 1; % alpha = @(x,y) 1*[1 0;0 1];

74 % gamma = @(x,y) x.*0+y.*0;

75 % f = @(x,y) 2*pi^2*sin(pi*x).*cos(pi*y);

76 elseif u_case == 2

77 u_r = @(x, y) x.*(1-x).*y.*(1-y);

78 grad_u_r = @(x, y) [(1-2*x).*y.*(1-y), x.*(1-x).*(1-2*y)];

79 % Here the diffusion coefficient α is not uniformly positive

80 % definite, so the rates of convergence (in L∞, L2, H1 norms)

81 % are unspecified though the exact solution is smooth.

82 alpha = @(x,y) x.*y; % alpha = @(x,y) x.*y.*[1 0;0 1];

83 gamma = @(x,y) 0.*x.*y;

84 f = @(x,y) -((1-4*x).*y.^2.*(1-y)+x.^2.*(1-x).*(1-4*y));

85 elseif u_case == 3

86 k = 3; % k = 9;

87 u_r = @(x, y) sin(2*pi*x).*sin(2*k*pi*y);

88 grad_u_r = @(x, y) [2*pi*cos(2*pi*x).*sin(2*k*pi*y), 2*k*pi*sin(2*pi*x).*cos(2*k*pi*y)];

89 alpha = @(x,y) [k^2, 0; 0, 1];

90 gamma = @(x,y) 0.*x.*y;

91 f = @(x,y) 8*k^2*pi^2*sin(2*pi*x).*sin(2*k*pi*y);

92 end

93

94 A = assembleReactionDiffusionMatrix(p,t,alpha,gamma);

95 % phi = assembleVector(p,t,f);

96 phi = assembleVectorByGaussQuad(p,t,f);

97

98 % process boundary conditions

99 % see also "example1.m" for how to process Neumann BCs

100 [A,phi] = processDirichletBoundary(A,phi,p,u_case);

101

102 % solve the linear system of equations

103 u = A\phi;

104

105 % get discretization errors in various norms

106 [L_inf_err,L2_err,H1_semi_err,H1_err] = errorEstimates(p,t,u,u_r,grad_u_r);

107

108 % t is specified as a 4-by-Nt matrix in pdemesh, although we don't

109 % use the 4th row in a 2D mesh. To be compatible with 3D meshes?

110 t=[t';zeros(1,size(t,1))];

111 p=p'; % required to be 2-by-nP

112

113 figure(1)

114 pdemesh(p,0123,t,u) % 2nd arg `e` is unused, but has to be a matrix

115 xlabel('x'); ylabel('y');

116 title('LFEM solution')

117

118 figure(2)

119 pdemesh(p,0123,t,u_r(p(1,:),p(2,:)))

120 xlabel('x'); ylabel('y');

121 title('exact solution')

122 end

123

124 function [A,phi] = processDirichletBoundary(A,phi,p,u_case)

125 if u_case == 1

126 db_pos1 = find(p(:,1)==0|p(:,1)==1);

127 db_pos2 = find(p(:,2)==0);

128 db_pos3 = find(p(:,2)==1);

129 db_pos = [db_pos1; db_pos2; db_pos3];

130 db_pos = unique(db_pos);

APPENDIX Contents 60

131 phi(db_pos1) = zeros(size(db_pos1,1),1);

132 phi(db_pos2) = sin(pi*p(db_pos2,1));

133 phi(db_pos3) = -sin(pi*p(db_pos3,1));

134 else%if u_case == 2 || u_case ==3

135 db_pos = find(p(:,1)==0|p(:,1)==1|p(:,2)==0|p(:,2)==1);

136 phi(db_pos) = 0;

137 end

138 A(db_pos,:) = 0;

139 A(db_pos,db_pos) = eye(size(db_pos,1));

140 end

Code listing 10: Examples used for comparison with the WG FEM

1 % Gaussian quadrature over a triangle

2 function S = GaussTriaQuad(triangle, f)

3 % @para triangle: a 3x2 matrix, 3 pairs of (x,y) coordinates

4 % @para f: function handle of a two-variale func to be integrated

5

6 % 6-point quadrature rule of order 4 on the unit triangle [0 0;1 0;0 1]

7 w = [1/60; 1/60; 1/60; 9/60; 9/60 ; 9/60];

8 x = [1/2 0; 1/2 1/2; 0 1/2; 1/6 1/6; 1/6 2/3; 2/3 1/6];

9

10 % An affine mapping that transforms the unit triangle to a general

11 % triangle:

12 %

13 % |\ \Phi(x^) = F * x^ + \tau /\

14 % | \ ---------------------------> / \

15 % |____\ /______\

16 % (K^) (K)

17

18 bK = triangle(1,:);

19 BK = [triangle(2,:)-bK; triangle(3,:)-bK];

20 det_BK = abs(det(BK));

21

22 % transform quadrature points and integrate

23 x = x*BK+bK;

24 S = sum(w.*f(x(:,1),x(:,2)))*det_BK;

25 end

Code listing 11: Gaussian quadrature over a triangle

1 % Gaussian quadrature

2 function T = Gaussquad(f,a,b,n)

3 if nargin<4

4 n=8;

5 end

6 % Gaussian quarature points & weights on [-1,1]

7 if n == 2

8 w = [1,1]; % weights

9 p = [-1/sqrt(3),1/sqrt(3)]; % points

10 elseif n == 4

11 w = [0.3478548451,0.3478548451,0.6521451549,0.6521451549];

12 p = [0.8611363116,-0.8611363116,0.3399810436,-0.3399810436];

13 elseif n == 8

14 w = [0.1012285363,0.1012285363,0.2223810345,0.2223810345,0.3137066459,...

15 0.3137066459,0.3626837834,0.3626837834];

16 p = [0.9602898565,-0.9602898565,0.7966664774,-0.7966664774,0.5255324099,...

17 -0.5255324099,0.1834346425,-0.1834346425];

18 else

19 error('n must be either 2 or 4 or 8')

20 end

21

22 % take a linear transform: x = t*(b-a)/2 + (a+b)/2, where t belongs to [-1,1]

23 % int(f,[a,b]) = (b-a)/2 * int(f(t*(b-a)/2 + (a+b)/2), [-1,1])

APPENDIX Contents 61

24 w = 0.5*(b-a)*w;

25 p = 0.5*(b-a)*p+0.5*(a+b);

26

27 T = w*f(p).';

28 end

Code listing 12: Gaussian quadrature in 1D

1 [x,y] = meshgrid((1:2:10)/10,(1:2:10)/10);

2 tri = delaunay(x,y);

3 z = peaks(5);

4 z = z + .3*rand(5); % oscillation from the Gaussian distributions

5 zmax=max(max(z)); zmin=min(min(z));

6 a=.05; b =1;

7 z = a+(z-zmin)/(zmax-zmin)*(b-a); % transform to [a,b]

8

9 figure(1)

10 trisurf(tri,x,y,z)

11 figure(2)

12 triplot(tri,x,y)

13

14 % plot the mesh in 3d coordinate system

15 figure(1)

16 hold on

17 t=[.1, .9]; z0=[0,0];

18 for v=.1:.2:.9

19 plot3(t,[v,v],z0,'r');

20 plot3([v,v],t,z0,'r');

21 end

22 for v=.3:.2:.9

23 plot3([.1,v],[v,.1],z0,'r')

24 end

25 for v=.3:.2:.7

26 plot3([v,.9],[.9,v],z0,'r')

27 end

28

29 % You may want to adjust the figure to a satisfying position first

30 % fig2svg("../svg/trisurf_piecewise_affine_linear_function_example.svg")

31 %%% NOTE %%%

32 % When exporting to svg, the red mesh will cover (be on the upper layer)

33 % part of the surface plot if we first draw the surface then the mesh.

34 % But we can use some svg editor (for example, Inkscape) to raise the layer

35 % of the surface so that we can use the svg in our paper.

Code listing 13: Code using trisurf for drawing the piecewise affine linear function in Figure 9

	Contents
	0 Introduction
	1 Weak Formulation
	2 Discretization
	2.1 Choices of Trial/Test Space and Basis
	2.1.1 Meshes (Grids) in 1D: Intervals
	2.1.2 Meshes in 2D: Triangulations
	2.1.3 Space and Basis in 1D
	2.1.4 Space and Basis in 2D

	2.2 Computing Galerkin Matrices and R.H.S. Vectors
	2.2.1 In One-Dimension
	2.2.2 Sparsity of Galerkin Matrix
	2.2.3 Computation of Galerkin Matrix
	2.2.4 Computation of Right-Hand Side Vector

	3 Error Analysis
	4 Implementation
	4.1 Mesh Generation, Index Mapping, and Mesh Refinement
	4.2 Local Computations
	Local Shape Functions
	Affine Equivalence
	Local Quadrature

	4.3 Assembly Algorithms
	4.4 Incorporation of Boundary Conditions
	4.5 Considerations for Higher Order Finite Elements

	5 Numerical Experiments
	5.1 Example 1
	5.2 Example 2
	5.3 Examples for TPBVP

	6 Further Reading—A Weak Galerkin FEM
	6.1 Weak Gradients and Discrete Weak Gradients
	6.2 Weak Galerkin Finite Element Schemes
	6.3 Error Analysis for Weak Galerkin
	Error Equation
	Error Estimates

	6.4 Comparison to Standard FEM
	Comparison Example 1
	Comparison Example 2
	Comparison Example 3
	Comparison Example 4

	7 Conclusion
	References
	Appendix

